*Introduction to Neural Networks *- Day 10 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 54:12

Speaker: : Moritz Wolter

Introduction to Convolutional Neural Networks* *- Day 11 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 42:07

Speaker: : Moritz Wolter

*Initialization, Optimization, and Regularization** *- Day 12 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 42:07

Speaker: : Moritz Wolter

U-Nets for medical Image-Segmentation* *- Day 13 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 16:45

Speaker: : Moritz Wolter

Sequence Processing - Day 15 lecture of the Foundations of Machine Learning in Python course.

*High-Performance Computing and Analytics Lab, University of Bonn*

Difficulty level: Advanced

Duration: 47:45

Speaker: : Moritz Wolter

This lesson briefly goes over the outline of the Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:05

Speaker: : Dan Goodman

This lesson delves into the the structure of one of the brain's most elemental computational units, the neuron, and how said structure influences computational neural network models.

Difficulty level: Intermediate

Duration: 6:33

Speaker: : Marcus Ghosh

In this lesson you will learn how machine learners and neuroscientists construct abstract computational models based on various neurophysiological signalling properties.

Difficulty level: Intermediate

Duration: 10:52

Speaker: : Dan Goodman

In this lesson, you will learn about some typical neuronal models employed by machine learners and computational neuroscientists, meant to imitate the biophysical properties of real neurons.

Difficulty level: Intermediate

Duration: 3:12

Speaker: : Dan Goodman

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course.

Difficulty level: Intermediate

Duration: 5:58

Speaker: : Dan Goodman

In this lesson, you will learn about how machine learners and computational neuroscientists design and build models of neuronal synapses.

Difficulty level: Intermediate

Duration: 8:59

Speaker: : Dan Goodman

This lesson goes over some examples of how machine learners and computational neuroscientists go about designing and building neural network models inspired by biological brain systems.

Difficulty level: Intermediate

Duration: 12:52

Speaker: : Dan Goodman

This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.

Difficulty level: Intermediate

Duration: 3:51

Speaker: : Dan Goodman

This lesson characterizes different types of learning in a neuroscientific and cellular context, and various models employed by researchers to investigate the mechanisms involved.

Difficulty level: Intermediate

Duration: 3:54

Speaker: : Dan Goodman

In this lesson, you will learn about different approaches to modeling learning in neural networks, particularly focusing on system parameters such as firing rates and synaptic weights impact a network.

Difficulty level: Intermediate

Duration: 9:40

Speaker: : Dan Goodman

In this lesson, you will learn more about some of the issues inherent in modeling neural spikes, approaches to ameliorate these problems, and the pros and cons of these approaches.

Difficulty level: Intermediate

Duration: 5:31

Speaker: : Dan Goodman

In this lesson, you will learn about some of the many methods to train spiking neural networks (SNNs) with either no attempt to use gradients, or only use gradients in a limited or constrained way.

Difficulty level: Intermediate

Duration: 5:14

Speaker: : Dan Goodman

In this lesson, you will learn how to train spiking neural networks (SNNs) with a surrogate gradient method.

Difficulty level: Intermediate

Duration: 11:23

Speaker: : Dan Goodman

This video briefly goes over the exercises accompanying Week 6 of the Neuroscience for Machine Learners (Neuro4ML) course, *Understanding Neural Networks*.

Difficulty level: Intermediate

Duration: 2:43

Speaker: : Marcus Ghosh

Course:

This lesson gives an introduction to the central concepts of machine learning, and how they can be applied in Python using the scikit-learn package.

Difficulty level: Intermediate

Duration: 2:22:28

Speaker: : Jake Vanderplas

- Artificial Intelligence (1)
- Notebooks (1)
- Provenance (1)
- DANDI archive (1)
- EBRAINS RI (6)
- Animal models (2)
- Brain-hardware interfaces (1)
- Clinical neuroscience (23)
- General neuroscience
(17)
- General neuroinformatics
(12)
- Computational neuroscience (83)
- Statistics (5)
- Computer Science (5)
- Genomics (7)
- Data science
(9)
- (-) Open science (5)
- Project management (1)
- Education (1)
- Neuroethics (5)