Skip to main content

Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 56:49

NWB: An ecosystem for neurophysiology data standardization

Difficulty level: Intermediate
Duration: 29:53
Speaker: : Oliver Ruebel

DAQCORD is a framework for the design, documentation and reporting of data curation methods in order to advance the scientific rigour, reproducibility and analysis of the data. This lecture covers the rationale for developing the framework, the process in which the framework was developed, and ends with a presentation of the framework. While the driving use case for DAQCORD was clinical traumatic brain injury research, the framework is applicable to clinical studies in other domains of clinical neuroscience research.

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Ari Ercole

PyNN is a simulator-independent language for building neuronal network models. The PyNN API aims to support modelling at a high-level of abstraction (populations of neurons, layers, columns and the connections between them) while still allowing access to the details of individual neurons and synapses when required. PyNN provides a library of standard neuron, synapse, and synaptic plasticity models which have been verified to work the same on the different supported simulators. PyNN also provides a set of commonly-used connectivity algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes it easy to provide your own connectivity in a simulator-independent way. This lecture was part of the 7th SpiNNaker Workshop held 3 - 6 October 2017.

Difficulty level: Intermediate
Duration: 25:49

Introduction to the central concepts of machine learning, and how they can be applied in Python using the Scikit-learn Package. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 2:22:28
Speaker: : Jake Vanderplas

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and go through both motivation and process involved in moving your research computing to the cloud. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 3:09:12
Speaker: : Amanda Tan

This lecture on multi-scale entropy by Jil Meier is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 39:05
Speaker: : Jil Meier

This lecture on modeling epilepsy using TVB by Julie Courtiol is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 37:12
Speaker: : Julie Courtiol

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 5:31
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 13:48
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 13:11
Speaker: : Mike X. Cohen