This lecture presents the Medical Informatics Platform's data federation in epilepsy.
Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.
This talk introduces data sharing initiatives in Epilepsy, particularly across Europe.
The epilepsy SP actively promotes and supports epilepsy-related issues as well as educational and scientific activities within the framework of EAN. Our partners ILAE/ILAE Europe, EpiCare, EPNS and AOAN are actively involved. One of the major tasks is promoting submissions of session proposals for EAN congress balancing new scientific approaches and educational need for teaching courses. Outside of congress activities, contributions to e-learning facilities on the EAN website such as registrars reading list, scales and scores and breaking news are regularly presented or updated. Particular since the COVID pandemic, publications on COVID and any issues of epilepsy or seizures are regularly screened and summarized in neurology updates. In partnership with the ILAE/ILAE Europe, several guidelines are under preparation.
Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
NWB: An ecosystem for neurophysiology data standardization
DAQCORD is a framework for the design, documentation and reporting of data curation methods in order to advance the scientific rigour, reproducibility and analysis of the data. This lecture covers the rationale for developing the framework, the process in which the framework was developed, and ends with a presentation of the framework. While the driving use case for DAQCORD was clinical traumatic brain injury research, the framework is applicable to clinical studies in other domains of clinical neuroscience research.
PyNN is a simulator-independent language for building neuronal network models. The PyNN API aims to support modelling at a high-level of abstraction (populations of neurons, layers, columns and the connections between them) while still allowing access to the details of individual neurons and synapses when required. PyNN provides a library of standard neuron, synapse, and synaptic plasticity models which have been verified to work the same on the different supported simulators. PyNN also provides a set of commonly-used connectivity algorithms (e.g. all-to-all, random, distance-dependent, small-world) but makes it easy to provide your own connectivity in a simulator-independent way. This lecture was part of the 7th SpiNNaker Workshop held 3 - 6 October 2017.
This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment.
This lesson corresponds to slides 1-64 in the PDF below.
This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).
This lesson corresponds to slides 65-90 of the PDF below.
This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.
This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.
In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.
Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.
This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.
In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.
This talk gives an overview of the Human Brain Project, a 10-year endeavour putting in place a cutting-edge research infrastructure that will allow scientific and industrial researchers to advance our knowledge in the fields of neuroscience, computing, and brain-related medicine.
This lecture gives an introduction to the European Academy of Neurology, its recent achievements and ambitions.
This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics.
This lesson is an overview of transcriptomics, from fundamental concepts of the central dogma and RNA sequencing at the single-cell level, to how genetic expression underlies diversity in cell phenotypes.