Skip to main content

The Virtual Brain is an open-source, multi-scale, multi-modal brain simulation platform. In this lesson, you get introduced to brain simulation in general and to The Virtual brain in particular. Prof. Ritter will present the newest approaches for clinical applications of The Virtual brain - that is, for stroke, epilepsy, brain tumors and Alzheimer’s disease - and show how brain simulation can improve diagnostics, therapy and understanding of neurological disease.

Difficulty level: Beginner
Duration: 1:35:08
Speaker: : Petra Ritter

The concept of neural masses, an application of mean field theory, is introduced as a possible surrogate for electrophysiological signals in brain simulation. The mathematics of neural mass models and their integration to a coupled network are explained. Bifurcation analysis is presented as an important technique in the understanding of non-linear systems and as a fundamental method in the design of brain simulations. Finally, the application of the described mathematics is demonstrated in the exploration of brain stimulation regimes.

Difficulty level: Beginner
Duration: 1:49:24
Speaker: : Andreas Spiegler

The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner
Duration: 1:28:53
Speaker: : Julie Courtiol

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:03:07
Speaker: : Russell Poldrack

This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 55:39
Speaker: : Angela Laird

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go?

 

This lecture covers the needs and challenges involved in creating a FAIR ecosystem for neuroimaging research.

Difficulty level: Beginner
Duration: 12:26
Speaker: : Camille Maumet

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles

 

This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.

Difficulty level: Beginner
Duration: 12:33
Speaker: : David Keator

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles.

 

This lecture covers the processes, benefits, and challenges involved in designing, collecting, and sharing FAIR neuroscience datasets.

Difficulty level: Beginner
Duration: 11:35

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles.

 

This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.

Difficulty level: Beginner
Duration: 12:06
Speaker: : Melanie Ganz

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles.

 

This lecture covers the benefits and difficulties involved when re-using open datasets, and how metadata is important to the process.

Difficulty level: Beginner
Duration: 11:20
Speaker: : Elizabeth DuPre

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles.

 

This lecture provides guidance on the ethical considerations the clinical neuroimaging community faces when applying the FAIR principles to their research. This lecture was part of the FAIR approaches for neuroimaging research session at the 2020 INCF Assembly.

Difficulty level: Beginner
Duration: 13:11
Speaker: : Gustav Nilsonne

This lecture covers the ethical implications of the use of functional neuroimaging to assess covert awareness in unconscious patients and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.

Difficulty level: Beginner
Duration: 1:00:50
Speaker: : Athena Demertzi

This module covers many of the types of non-invasive neurotech and neuroimaging devices including Electroencephalography (EEG), Electromyography (EMG), Electroneurography (ENG), Magnetoencephalography (MEG), functional Near-Infrared Spectroscopy (fNRIs), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning

Serving as good refresher, Shawn Grooms explains the maths and logic concepts that are important for programmers to understand, including sets, propositional logic, conditional statements, and more.

 

This compilation is courtesy of freeCodeCamp.

Difficulty level: Beginner
Duration: 01:00:07
Speaker: :

Linear algebra is the branch of mathematics concerning linear equations such as linear functions and their representations through matrices and vector spaces. As such, it underlies a huge variety of analyses in the neurosciences.  This lesson provides a useful refresher which will facilitate the use of Matlab, Octave, and various matrix-manipulation and machine-learning software.

 

This lesson was created by RootMath.

Difficulty level: Beginner
Duration: 01:21:30
Speaker: :