This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.
This lecture provides reviews some standards for project management and organization, including motivation from the view of the FAIR principles and improved reproducibility.
The state of the field regarding the diagnosis and treatment of major depressive disorder (MDD) is discussed. Current challenges and opportunities facing the research and clinical communities are outlined, including appropriate quantitative and qualitative analyses of the heterogeneity of biological, social, and psychiatric factors which may contribute to MDD.
This lesson delves into the opportunities and challenges of telepsychiatry. While novel digital approaches to clinical research and care have the potential to improve and accelerate patient outcomes, researchers and care providers must consider new population factors, such as digital disparity.
This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis, and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.
This lecture will provide an overview of neuroimaging techniques and their clinical applications.
This lecture picks up from the previous lesson, providing an overview of neuroimaging techniques and their clinical applications.
This lesson discusses both state-of-the-art detection and prevention schema in working with neurodegenerative diseases.
This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.
In this lesson, you will learn about how genetics can contribute to our understanding of psychiatric phenotypes.
This lecture focuses on the rationale for employing neuroimaging methods for movement disorders.
This lecture provides an overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the central nervous system.
This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.
This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.
The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.
This lecture covers the description and brief history of data science and its use in neuroinformatics.
This lesson provides an overview of self-supervision as it relates to neural data tasks and the Mine Your Own vieW (MYOW) approach.
This lesson provides a hands-on tutorial for generating simulated brain data within the EBRAINS ecosystem.