Synaptic transmission and neurotransmitters
Neurodata Without Borders (NWB) is a data standard for neurophysiology that provides neuroscientists with a common standard to share, archive, use, and build common analysis tools for neurophysiology data.
Neuroscience Information Exchange (NIX) Format data model allows storing fully annotated scientific datasets, i.e. the data together with rich metadata and their relations in a consistent, comprehensive format. Its aim is to achieve standardization by providing a common data structure and APIs for a multitude of data types and use cases, focused on but not limited to neuroscience. In contrast to most other approaches, the NIX approach is to achieve this flexibility with a minimum set of data model elements.
NWB: An ecosystem for neurophysiology data standardization
Learn how to build and share extensions in NWB
Learn how to build custom APIs for extension
Learn how to handle writing very large data in PyNWB
Learn how to handle writing very large data in MatNWB
This lecture discusses the FAIR principles as they apply to electrophysiology data and metadata, the building blocks for community tools and standards, platforms and grassroots initiatives, and the challenges therein.
This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.
This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.
This lecture contains an overview of the Australian Electrophysiology Data Analytics Platform (AEDAPT), how it works, how to scale it, and how it fits into the FAIR ecosystem.
This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.
Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible, Interoperable and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been successes? What is currently very difficult? Where does neuroscience need to go?
This lecture will provide an overview of the INCF Training Suite, a collection of tools that embraces the FAIR principles developed by members of the INCF Community. This will include an overview of TrainingSpace, Neurostars, and KnowledgeSpace.
This lecture contains an overview of the China-Cuba-Canada neuroinformatics ecosystem for Quantitative Tomographic EEG Analysis (qEEGt).
How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.
The mechanisms behind changes in synaptic function created by learning.
JupyterHub is a simple, highly extensible, multi-user system for managing per-user Jupyter Notebook servers, designed for research groups or classes. This lecture covers deploying JupyterHub on a single server, as well as deploying with Docker using GitHub for authentication.
This talk highlights a set of platform technologies, software, and data collections that close and shorten the feedback cycle in research.
Introduction to the FAIR Principles and examples of applications of the FAIR Principles in neuroscience. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.