Research Resource Identifiers (RRIDs) are ID numbers assigned to help researchers cite key resources (antibodies, model organisms and software projects) in the biomedical literature to improve transparency of research methods.
Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.
This lecture will provide an overview of neuroimaging techniques and their clinical applications.
This lecture will provide an overview of neuroimaging techniques and their clinical applications
This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases
This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.
How genetics can contribute to our understanding of psychiatric phenotypes.
The lecture focuses on rationale for employing neuroimaging methods for movement disorders
An overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the Central Nervous System.
This module explores sensation in the brain: what organs are involved, sensory pathways, processing centers, and theories of integration. We cover sensory transduction, vision, audition olfaction, gustation, and somatosensation.
This module covers how the brain interacts with the world through motor movements. Motor movements underlie so much of our functioning, our speech, the opening and closing of our eyes, and the beating of our hearts. We’ll learn about areas of the brain involved in movement and some of its pathways.
This module covers the structure and function of the neuron, its components and mechanisms, action potentials, and the many glial cells that support it.
This module explains how neurons come together to create the networks that give rise to our thoughts. The totality of our neurons and their connection is called our connectome. Learn how this connectome changes as we learn, and computes information. We will also learn about physiological phenomena of the brain such as synchronicity that gives rise to brain waves.