Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface. Afterwards the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.
Introduction to the Mathematics chapter of Datalabcc's "Foundations in Data Science" series.
Primer on elementary algebra
Primer on linear algebra
Primer on systems of linear equations
Primer on calculus
How calculus relates to optimization
Big O notation
Basics of probability.
Ion channels and the movement of ions across the cell membrane.
Action potentials, and biophysics of voltage-gated ion channels.
Voltage-gating kinetics of sodium and potassium channels.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Action potential initiation and propagation.
Long-range inhibitory connections in the brain, with examples from three different systems.
How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.
This lecture will discuss how understanding and applying simple neuroanatomical rules, one can localize the damage along the neuroaxis, the first crucial step toward making the correct clinical diagnosis and initiating treatment.
Introduction to the principal of anatomical organization of neural systems in the human brain and spinal cord that mediate sensation, integrate signals, and motivate behavior.
This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.
From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.