Skip to main content

This lesson gives an in-depth description of scientific workflows, from study inception and planning to dissemination of results. 

Difficulty level: Beginner
Duration: 44:41

This lecture describes how to build research workflows, including a demonstrate using DataJoint Elements to build data pipelines.

Difficulty level: Intermediate
Duration: 47:00
Speaker: : Dimitri Yatsenko

This lesson gives an introductory presentation on how data science can help with scientific reproducibility.

Difficulty level: Beginner
Duration:
Speaker: : Michel Dumontier

This lecture discusses how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.

Difficulty level: Beginner
Duration: 13:16
Speaker: : Kelly Shen

This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.

Difficulty level: Beginner
Duration: 15:14

This lesson introduces concepts and practices surrounding reference atlases for the mouse and rat brains. Additionally, this lesson provides discussion around examples of data systems employed to organize neuroscience data collections in the context of reference atlases as well as analytical workflows applied to the data.

Difficulty level: Beginner
Duration: 03:04:29
Speaker: :

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course. 

Difficulty level: Intermediate
Duration: 5:58
Speaker: : Dan Goodman

This video briefly goes over the exercises accompanying Week 6 of the Neuroscience for Machine Learners (Neuro4ML) course, Understanding Neural Networks.

Difficulty level: Intermediate
Duration: 2:43
Speaker: : Marcus Ghosh
Course:

This lecture covers the description and characterization of an input-output relationship in a information-theoretic context. 

Difficulty level: Beginner
Duration: 1:35:33

This lesson is part 1 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:45:48
Speaker: : Jonathan Pillow

This lesson is part 2 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:50:31
Speaker: : Jonathan Pillow

This lesson provides an introduction to modeling single neurons, as well as stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:26:06
Speaker: : Bard Ermentrout

This lesson continues a thorough description of the concepts, theories, and methods involved in the modeling of single neurons. 

Difficulty level: Intermediate
Duration: 1:25:38
Speaker: : Bard Ermentrout

In this lesson you will learn about fundamental neural phenomena such as oscillations and bursting, and the effects these have on cortical networks. 

Difficulty level: Intermediate
Duration: 1:24:30
Speaker: : Bard Ermentrout

This lesson continues discussing properties of neural oscillations and networks. 

Difficulty level: Intermediate
Duration: 1:31:57
Speaker: : Bard Ermentrout

In this lecture, you will learn about rules governing coupled oscillators, neural synchrony in networks, and theoretical assumptions underlying current understanding.

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Bard Ermentrout

This lesson provides a continued discussion and characterization of coupled oscillators. 

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : Bard Ermentrout

This lesson gives an overview of modeling neurons based on firing rate. 

Difficulty level: Intermediate
Duration: 1:26:42
Speaker: : Bard Ermentrout

This lesson characterizes the pattern generation observed in visual system hallucinations.

Difficulty level: Intermediate
Duration: 1:20:42
Speaker: : Bard Ermentrout

This lesson gives an introduction to stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:26:06
Speaker: : Bard Ermentrout