The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.
Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.
Learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper: On the Nature of Seizure Dynamics which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.
Introductory presentation on how data science can help with scientific reproducibility.
Introduction to the Mathematics chapter of Datalabcc's "Foundations in Data Science" series.
Primer on elementary algebra
Primer on linear algebra
Primer on systems of linear equations
Primer on calculus
How calculus relates to optimization
Big O notation
Basics of probability.
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
Ion channels and the movement of ions across the cell membrane.
Action potentials, and biophysics of voltage-gated ion channels.
Voltage-gating kinetics of sodium and potassium channels.
The ionic basis of the action potential, including the Hodgkin Huxley model.
Action potential initiation and propagation.
Long-range inhibitory connections in the brain, with examples from three different systems.
Introduction to the course Cellular Mechanisms of Brain Function.