Skip to main content
Lecture title:

This lecture covers an introduction to connectomics, and image processing tools for the study of connectomics. 

Difficulty level: Beginner
Duration: 1:23:03
Lecture title:

This lecture covers acquisition techniques, the physics of MRI, diffusion imaging, prediction using fMRI. 

Difficulty level: Beginner
Duration: 1:40:21
Lecture title:

This lecture will provide an overview of neuroimaging techniques and their clinical applications.

Difficulty level: Beginner
Duration: 45:29
Speaker: : Dafna Ben Bashat
Lecture title:

Optical imaging offers a look inside the working brain. This lecture takes a look at orientation and ocular dominance columns in the visual cortex, and shows how they can be viewed with calcium imaging.

Difficulty level: Beginner
Duration: 26:17
Speaker: : Clay Reid
Lecture title:

Functional imaging has led to the discovery of a plethora of visual cortical regions. This lecture introduces functional imaging techniques and their teachings about the visual cortex.

Difficulty level: Beginner
Duration: 1:07:03
Speaker: : Clay Reid
Lecture title:

Investigating the structure of synapses with electron microscopy.

Difficulty level: Beginner
Duration: 28:23
Speaker: : Carl Petersen
Lecture title:

This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network. 

Difficulty level: Beginner
Duration: 1:32:17
Speaker: : Shih-Chii Liu
Lecture title:

Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.

Difficulty level: Beginner
Duration: 21:15
Speaker: : Tadashi Yamazaki
Lecture title:

Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.

Difficulty level: Beginner
Duration: 41:57
Speaker: : Giacomo Indiveri
Lecture title:

Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.

Difficulty level: Beginner
Duration: 20:39
Speaker: : Giacomo Indiveri
Lecture title:

The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.

Difficulty level: Intermediate
Duration: 19:57
Lecture title:

2nd part of the lecture. This lecture will discuss how understanding and applying simple neuroanatomical rules, one can localize the damage along the neuroaxis, the first crucial step toward making the correct clinical diagnosis and initiating treatment.

Difficulty level: Beginner
Duration: 42:35
Speaker: : Eitan Auriel
Lecture title:

The ionic basis of the action potential, including the Hodgkin Huxley model. 

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen
Lecture title:

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen
Lecture title:

The ionic basis of the action potential, including the Hodgkin Huxley model. 

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen
Lecture title:

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen
Lecture title:

The composition of the cell membrane.

Difficulty level: Beginner
Duration: 14:46
Speaker: : Carl Petersen
Lecture title:

Spatiotemporal dynamics of the membrane potential.

Difficulty level: Beginner
Duration: 19:14
Speaker: : Carl Petersen
Lecture title:

Action potential initiation and propagation.

Difficulty level: Beginner
Duration: 09:13
Speaker: : Carl Petersen
Lecture title:

Synaptic transmission and neurotransmitters

Difficulty level: Beginner
Duration: 28:22
Speaker: : Carl Petersen