Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
Tutorial describing the basic features of the Brain Explorer® 3-D viewer for the mouse brain
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
The chair of the workshop is giving an introduction and a motivating argument.
This lecture highlights the importance of correct annotation and assignment of location, and updated atlas resources to avoid errors in navigation and data interpretation.
We are at the exciting technological stage where it has become feasible to represent the anatomy of an entire human brain at the cellular level. In this presentation, the speaker explains that neuroanatomy in the XXI Century has become an effort towards the virtualization and standardization of brain tissue.
This lecture covers essential features of digital brain models for neuroinformatics.
This presentation covers the neuroinformatics tools and techniques used and their relationship to neuroanatomy for the Allen atlases of the mouse, developing mouse, and mouse connectional atlas.
This primer on optogenetics primer discusses how to manipulate neuronal populations with light at millisecond resolution and offers possible applications such as curing the blind and "playing the piano" with cortical neurons.
Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.
Introduction to the course Cellular Mechanisms of Brain Function.
Introduction to the course Cellular Mechanisms of Brain Function.
Ion channels and the movement of ions across the cell membrane.
Action potential initiation and propagation.
Synaptic transmission and neurotransmitters
This lecture covers NeuronUnit, a library that builds upon SciUnit and integrates with several existing neuroinformatics resources to support validating single-neuron models using data gathered by neurophysiologists.
An introduction to the NeuroElectro project, which aims to organize information on cellular neurophysiology. Speaker: Shreejoy Tripathy
Simultaneously recorded neurons in non-human primates coordinate their spiking activity in a sequential manner that mirrors the dominant wave propagation directions of the local field potentials.
This talk covers statistical analysis of spike train data, the modeling approach GLM, and the problem of assessing neural synchrony.