Skip to main content
Lecture title:

Lecture on the most important concepts in software engineering

Difficulty level: Beginner
Duration: 32:59
Speaker: : Jeff Muller
Lecture title:

This lecture covers an introduction to connectomics, and image processing tools for the study of connectomics. 

Difficulty level: Beginner
Duration: 1:23:03
Lecture title:

This lecture covers acquisition techniques, the physics of MRI, diffusion imaging, prediction using fMRI. 

Difficulty level: Beginner
Duration: 1:40:21
Lecture title:

This lecture will provide an overview of neuroimaging techniques and their clinical applications.

Difficulty level: Beginner
Duration: 45:29
Speaker: : Dafna Ben Bashat
Lecture title:

Optical imaging offers a look inside the working brain. This lecture takes a look at orientation and ocular dominance columns in the visual cortex, and shows how they can be viewed with calcium imaging.

Difficulty level: Beginner
Duration: 26:17
Speaker: : Clay Reid
Lecture title:

Functional imaging has led to the discovery of a plethora of visual cortical regions. This lecture introduces functional imaging techniques and their teachings about the visual cortex.

Difficulty level: Beginner
Duration: 1:07:03
Speaker: : Clay Reid
Lecture title:

Investigating the structure of synapses with electron microscopy.

Difficulty level: Beginner
Duration: 28:23
Speaker: : Carl Petersen
Lecture title:

This primer on optogenetics primer discusses how to manipulate neuronal populations with light at millisecond resolution and offers possible applications such as curing the blind and "playing the piano" with cortical neurons.

Difficulty level: Beginner
Duration: 59:06
Speaker: : Clay Reid
Lecture title:

2nd part of the lecture. Introduction to cell receptors and signalling cascades

Difficulty level: Beginner
Duration: 41:38
Lecture title:

GABAergic interneurons and local inhibition on the circuit level.

Difficulty level: Beginner
Duration: 16:27
Speaker: : Carl Petersen
Lecture title:

Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32
Lecture title:

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen
Lecture title:

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen
Lecture title:

Ion channels and the movement of ions across the cell membrane.

Difficulty level: Beginner
Duration: 25:51
Speaker: : Carl Petersen
Lecture title:

Action potential initiation and propagation.

Difficulty level: Beginner
Duration: 09:13
Speaker: : Carl Petersen
Lecture title:

Synaptic transmission and neurotransmitters

Difficulty level: Beginner
Duration: 28:22
Speaker: : Carl Petersen
Lecture title:

This lecture covers NeuronUnit, a library that builds upon SciUnit and integrates with several existing neuroinformatics resources to support validating single-neuron models using data gathered by neurophysiologists.

Difficulty level: Intermediate
Duration: 17:21
Speaker: : Richard Gerkin
Lecture title:

An introduction to the NeuroElectro project, which aims to organize information on cellular neurophysiology. Speaker: Shreejoy Tripathy

Difficulty level: Intermediate
Duration: 17:41
Lecture title:

Simultaneously recorded neurons in non-human primates coordinate their spiking activity in a sequential manner that mirrors the dominant wave propagation directions of the local field potentials.

Difficulty level: Intermediate
Duration: 26:54
Lecture title:

This talk covers statistical analysis of spike train data, the modeling approach GLM, and the problem of assessing neural synchrony.

Difficulty level: Intermediate
Duration: 25:17
Speaker: : Rob Kass