The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.
Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.
Learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper: On the Nature of Seizure Dynamics which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.
Lecture on the most important concepts in software engineering
This lecture covers an introduction to connectomics, and image processing tools for the study of connectomics.
This lecture covers acquisition techniques, the physics of MRI, diffusion imaging, prediction using fMRI.
This lecture will provide an overview of neuroimaging techniques and their clinical applications.
Optical imaging offers a look inside the working brain. This lecture takes a look at orientation and ocular dominance columns in the visual cortex, and shows how they can be viewed with calcium imaging.
Functional imaging has led to the discovery of a plethora of visual cortical regions. This lecture introduces functional imaging techniques and their teachings about the visual cortex.
Investigating the structure of synapses with electron microscopy.
This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.
2nd part of the lecture. This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.
This lecture will provide an overview of neuroimaging techniques and their clinical applications
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
The lecture focuses on rationale for employing neuroimaging methods for movement disorders
Introduction to the course Cellular Mechanisms of Brain Function.
Introduction to the course Cellular Mechanisms of Brain Function.
Ion channels and the movement of ions across the cell membrane.
Action potential initiation and propagation.
Synaptic transmission and neurotransmitters