This lecture covers an introduction to neuroinformatics and its subfields, the content of the short course and future neuroinformatics applications.
This lecture gives an introduction to simulation, models, and the neural simulation tool NEST.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
This lecture covers describing and characterizing an input-output relationship.
This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.
2nd part of the lecture. This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.
This lecture will discuss how understanding and applying simple neuroanatomical rules, one can localize the damage along the neuroaxis, the first crucial step toward making the correct clinical diagnosis and initiating treatment.
This lecture will provide an overview of neuroimaging techniques and their clinical applications
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
The lecture focuses on rationale for employing neuroimaging methods for movement disorders
Introduction to the principal of anatomical organization of neural systems in the human brain and spinal cord that mediate sensation, integrate signals, and motivate behavior.
This lecture focuses on the comprehension of nociception and pain sensation. It highlights how the somatosensory system and different molecular partners are involved in nociception and how nociception and pain sensation are studied in rodents and humans and the development of pain therapy.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.
Forms of plasticity on many levels - short-term, long-term, metaplasticity, structural plasticity. With examples related to modelling of biochemical networks.
[NB: The sound uptake is a bit noisy the first few minutes, but gets better from about 5 mins in]
Introduction to modelling of chemical computation in the brain
Conference presentation on computationally demanding studies of synaptic plasticity on the molecular level
Part 1 of 2 of a tutorial on statistical models for neural data
Part 2 of 2 of a tutorial on statistical models for neural data.
Introduction to simple spiking neuron models.
This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.