Skip to main content

The probability of a hypothesis, given data.

Difficulty level: Beginner
Duration: 7:57
Speaker: : Barton Poulson

Why math is useful in data science.

Difficulty level: Beginner
Duration: 1:35
Speaker: : Barton Poulson

Why statistics are useful for data science.

Difficulty level: Beginner
Duration: 4:01
Speaker: : Barton Poulson

Statistics is exploring data.

Difficulty level: Beginner
Duration: 2:23
Speaker: : Barton Poulson

Graphical data exploration

Difficulty level: Beginner
Duration: 8:01
Speaker: : Barton Poulson

Numerical data exploration

Difficulty level: Beginner
Duration: 5:05
Speaker: : Barton Poulson

Simple description of statistical data.

Difficulty level: Beginner
Duration: 10:16
Speaker: : Barton Poulson

Basics of hypothesis testing.

Difficulty level: Beginner
Duration: 06:04
Speaker: : Barton Poulson

In this lecture, the speaker demonstrates Neurokernel's module interfacing feature by using it to integrate independently developed models of olfactory and vision LPUs based upon experimentally obtained connectivity information.

Difficulty level: Intermediate
Duration: 29:56
Speaker: : Aurel A. Lazar

Enabling neuroscience research using high performance computing

Difficulty level: Beginner
Duration: 39:27
Speaker: : Subha Sivagnanam
Difficulty level: Beginner
Duration: 48:22
Speaker: : Michael Feolo

This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network. 

Difficulty level: Beginner
Duration: 1:32:17
Speaker: : Shih-Chii Liu

Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.

Difficulty level: Beginner
Duration: 21:15
Speaker: : Tadashi Yamazaki

Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.

Difficulty level: Beginner
Duration: 41:57
Speaker: : Giacomo Indiveri

Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.

Difficulty level: Beginner
Duration: 20:39
Speaker: : Giacomo Indiveri

The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.

Difficulty level: Intermediate
Duration: 19:57

Introduction to the Mathematics chapter of Datalabcc's "Foundations in Data Science" series.

Difficulty level: Beginner
Duration: 2:53
Speaker: : Barton Poulson

Primer on elementary algebra

Difficulty level: Beginner
Duration: 3:03
Speaker: : Barton Poulson

Primer on linear algebra

Difficulty level: Beginner
Duration: 5:38
Speaker: : Barton Poulson

Primer on systems of linear equations

Difficulty level: Beginner
Duration: 5:24
Speaker: : Barton Poulson