FAIR principles and methods currently in development for assessing FAIRness.
Tutorial describing the basic search and navigation features of the Allen Mouse Brain Atlas
Tutorial describing the basic search and navigation features of the Allen Developing Mouse Brain Atlas
This tutorial demonstrates how to use the differential search feature of the Allen Mouse Brain Atlas to find gene markers for different regions of the brain and to visualize this gene expression in three-dimensional space. Differential search is also available for the Allen Developing Mouse Brain Atlas and the Allen Human Brain Atlas.
Lecture on the most important concepts in software engineering
Tutorial describing the basic features of the Brain Explorer® 3-D viewer for the mouse brain
The chair of the workshop is giving an introduction and a motivating argument.
This lecture highlights the importance of correct annotation and assignment of location, and updated atlas resources to avoid errors in navigation and data interpretation.
We are at the exciting technological stage where it has become feasible to represent the anatomy of an entire human brain at the cellular level. In this presentation, the speaker explains that neuroanatomy in the XXI Century has become an effort towards the virtualization and standardization of brain tissue.
This lecture covers essential features of digital brain models for neuroinformatics.
This presentation covers the neuroinformatics tools and techniques used and their relationship to neuroanatomy for the Allen atlases of the mouse, developing mouse, and mouse connectional atlas.
This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network.
Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.
Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.
This lecture covers structured data, databases, federating neuroscience-relevant databases, ontologies.
Introduction to neurons, synaptic transmission, and ion channels.
2nd part of the lecture. Introduction to cell receptors and signalling cascades
Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.