Skip to main content

Manipulate the default connectome provided with TVB to see how structural lesions effect brain dynamics. In this hands-on session you will insert lesions into the connectome within the TVB graphical user interface (GUI). Afterwards, the modified connectome will be used for simulations and the resulting activity will be analysed using functional connectivity.

Difficulty level: Beginner
Duration: 31:22
Speaker: : Paul Triebkorn

This presentation discusses the impact of data sharing in stroke.

Difficulty level: Intermediate
Duration: 16:33
Speaker: : Valeria Caso

This talks presents an overview of the potential for data federation in stroke research.

Difficulty level: Intermediate
Duration: 21:37
Course:

This talk focuses on the EAN Scientific Panel of Stroke, in particular on the aims and roles of the panel.

Difficulty level: Intermediate
Duration: 18:19
Speaker: : Anna Bersano

This lesson contains practical exercises which accompanies the first few lessons of the Neuroscience for Machine Learners (Neuro4ML) course. 

Difficulty level: Intermediate
Duration: 5:58
Speaker: : Dan Goodman

This video briefly goes over the exercises accompanying Week 6 of the Neuroscience for Machine Learners (Neuro4ML) course, Understanding Neural Networks.

Difficulty level: Intermediate
Duration: 2:43
Speaker: : Marcus Ghosh
Course:

This lecture covers the description and characterization of an input-output relationship in a information-theoretic context. 

Difficulty level: Beginner
Duration: 1:35:33

This lesson is part 1 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:45:48
Speaker: : Jonathan Pillow

This lesson is part 2 of 2 of a tutorial on statistical models for neural data.

Difficulty level: Beginner
Duration: 1:50:31
Speaker: : Jonathan Pillow

This lesson provides an introduction to modeling single neurons, as well as stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:26:06
Speaker: : Bard Ermentrout

This lesson continues a thorough description of the concepts, theories, and methods involved in the modeling of single neurons. 

Difficulty level: Intermediate
Duration: 1:25:38
Speaker: : Bard Ermentrout

In this lesson you will learn about fundamental neural phenomena such as oscillations and bursting, and the effects these have on cortical networks. 

Difficulty level: Intermediate
Duration: 1:24:30
Speaker: : Bard Ermentrout

This lesson continues discussing properties of neural oscillations and networks. 

Difficulty level: Intermediate
Duration: 1:31:57
Speaker: : Bard Ermentrout

In this lecture, you will learn about rules governing coupled oscillators, neural synchrony in networks, and theoretical assumptions underlying current understanding.

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Bard Ermentrout

This lesson provides a continued discussion and characterization of coupled oscillators. 

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : Bard Ermentrout

This lesson gives an overview of modeling neurons based on firing rate. 

Difficulty level: Intermediate
Duration: 1:26:42
Speaker: : Bard Ermentrout

This lesson characterizes the pattern generation observed in visual system hallucinations.

Difficulty level: Intermediate
Duration: 1:20:42
Speaker: : Bard Ermentrout

This lesson gives an introduction to stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:26:06
Speaker: : Bard Ermentrout

This lesson continues from the previous lectures, providing introduction to stability analysis of neural models.

Difficulty level: Intermediate
Duration: 1:25:38
Speaker: : Bard Ermentrout

In this lesson, you will learn about phenomena of neural populations such as synchrony, oscillations, and bursting.

Difficulty level: Intermediate
Duration: 1:24:30
Speaker: : Bard Ermentrout