This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network.
Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.
Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.
Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.
The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.
Introduction to the Mathematics chapter of Datalabcc's "Foundations in Data Science" series.
Primer on elementary algebra
Primer on linear algebra
Primer on systems of linear equations
Primer on calculus
How calculus relates to optimization
Big O notation
Basics of probability.
This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.
2nd part of the lecture. This lecture will highlight our current understanding and recent developments in the field of neurodegenerative disease research, as well as the future of diagnostics and treatment of neurodegenerative diseases.
This lecture will discuss how understanding and applying simple neuroanatomical rules, one can localize the damage along the neuroaxis, the first crucial step toward making the correct clinical diagnosis and initiating treatment.
2nd part of the lecture. This lecture will discuss how understanding and applying simple neuroanatomical rules, one can localize the damage along the neuroaxis, the first crucial step toward making the correct clinical diagnosis and initiating treatment.
This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.
Most psychiatric disorders (most notably dependence syndromes, depression, psychosis, and autism) are characterized by impaired social interaction, with many patients preferring a drug of abuse. This lecture focuses on the latest research on the neural basis of normal and impaired social interaction.
This lecture will provide an overview of neuroimaging techniques and their clinical applications.