Skip to main content
Lecture title:

This primer on optogenetics primer discusses how to manipulate neuronal populations with light at millisecond resolution and offers possible applications such as curing the blind and "playing the piano" with cortical neurons.

Difficulty level: Beginner
Duration: 59:06
Speaker: : Clay Reid
Lecture title:

This lecture covers computational principles that growth cones employ to detect and respond to environmental chemotactic gradients, focusing particularly on growth cone shape dynamics.

Difficulty level: Intermediate
Duration: 26:12
Speaker: : Geoff Goodhill
Lecture title:

In this lecture you will learn that in developing mouse somatosensory cortex, endogenous Btbd3 translocate to the cell nucleus in response to neuronal activity and oriented primary dendrites toward active axons in the barrel hollow.

Difficulty level: Intermediate
Duration: 27:32
Speaker: : Tomomi Shimogori
Lecture title:

In this presentation, the speaker describes some of their recent efforts to characterize the transcriptome of the developing human brain, and and introduction to the BrainSpan project.

Difficulty level: Intermediate
Duration: 30:45
Speaker: : Nenad Sestan
Lecture title:

How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.

Difficulty level: Beginner
Duration: 1:08:45
Speaker: : Clay Reid
Lecture title:

This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.

Difficulty level: Beginner
Duration: 37:36
Speaker: : Anat Achiron
Lecture title:

The ionic basis of the action potential, including the Hodgkin Huxley model. 

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen
Lecture title:

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen
Lecture title:

The ionic basis of the action potential, including the Hodgkin Huxley model. 

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen
Lecture title:

Introduction to the course Cellular Mechanisms of Brain Function.

Difficulty level: Beginner
Duration: 12:20
Speaker: : Carl Petersen
Lecture title:

Ion channels and the movement of ions across the cell membrane.

Difficulty level: Beginner
Duration: 28:08
Speaker: : Carl Petersen
Lecture title:

Spatiotemporal dynamics of the membrane potential.

Difficulty level: Beginner
Duration: 19:14
Speaker: : Carl Petersen
Lecture title:

Action potentials, and biophysics of voltage-gated ion channels.

Difficulty level: Beginner
Duration: 27:47
Speaker: : Carl Petersen
Lecture title:

Voltage-gating kinetics of sodium and potassium channels.

Difficulty level: Beginner
Duration: 19:20
Speaker: : Carl Petersen
Lecture title:

The ionic basis of the action potential, including the Hodgkin Huxley model.

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen
Lecture title:

Action potential initiation and propagation.

Difficulty level: Beginner
Duration: 23:16
Speaker: : Carl Petersen
Lecture title:

Neurotransmitter release in the presynaptic specialization.

Difficulty level: Beginner
Duration: 21:36
Speaker: : Carl Petersen
Lecture title:

Synaptic modulation through diffusing neurotransmitters.

Difficulty level: Beginner
Duration: 23:00
Speaker: : Carl Petersen
Lecture title:

Glutamatergic transmission.

Difficulty level: Beginner
Duration: 28:53
Speaker: : Carl Petersen
Lecture title:

Glutamate release after an action potential. Resulting post-synaptic potentials in a biophysically realistic situation.

Difficulty level: Beginner
Duration: 29:35
Speaker: : Carl Petersen