Skip to main content

Lecture on the most important concepts in software engineering

Difficulty level: Beginner
Duration: 32:59
Speaker: : Jeff Muller

This lecture covers modeling the neuron in silicon, modeling vision and audition and sensory fusion using a deep network. 

Difficulty level: Beginner
Duration: 1:32:17
Speaker: : Shih-Chii Liu

Presentation of a simulation software for spatial model neurons and their networks designed primarily for GPUs.

Difficulty level: Beginner
Duration: 21:15
Speaker: : Tadashi Yamazaki

Presentation of past and present neurocomputing approaches and hybrid analog/digital circuits that directly emulate the properties of neurons and synapses.

Difficulty level: Beginner
Duration: 41:57
Speaker: : Giacomo Indiveri

Presentation of the Brian neural simulator, where models are defined directly by their mathematical equations and code is automatically generated for each specific target.

Difficulty level: Beginner
Duration: 20:39
Speaker: : Giacomo Indiveri

The lecture covers a brief introduction to neuromorphic engineering, some of the neuromorphic networks that the speaker has developed, and their potential applications, particularly in machine learning.

Difficulty level: Intermediate
Duration: 19:57

Introductory presentation on how data science can help with scientific reproducibility.

Difficulty level: Beginner
Duration:
Speaker: : Michel Dumontier

Ion channels and the movement of ions across the cell membrane.

Difficulty level: Beginner
Duration: 28:08
Speaker: : Carl Petersen

Action potentials, and biophysics of voltage-gated ion channels.

Difficulty level: Beginner
Duration: 27:47
Speaker: : Carl Petersen

Voltage-gating kinetics of sodium and potassium channels.

Difficulty level: Beginner
Duration: 19:20
Speaker: : Carl Petersen

The ionic basis of the action potential, including the Hodgkin Huxley model.

Difficulty level: Beginner
Duration: 28:29
Speaker: : Carl Petersen

Action potential initiation and propagation.

Difficulty level: Beginner
Duration: 23:16
Speaker: : Carl Petersen

Long-range inhibitory connections in the brain, with examples from three different systems.

Difficulty level: Beginner
Duration: 19:05
Speaker: : Carl Petersen

2nd part of the lecture. Introduction to cell receptors and signalling cascades

Difficulty level: Beginner
Duration: 41:38

GABAergic interneurons and local inhibition on the circuit level.

Difficulty level: Beginner
Duration: 16:27
Speaker: : Carl Petersen

The "connectome" is a term, coined in the past decade, that has been used to describe more than one phenomenon in neuroscience. This lecture explains the basics of structural connections at the micro-, meso- and macroscopic scales.

Difficulty level: Beginner
Duration: 1:13:16
Speaker: : Clay Reid

The Human Connectome Project aims to provide an unparalleled compilation of neural data, an interface to graphically navigate this data and the opportunity to achieve never before realized conclusions about the living human brain.

Difficulty level: Advanced
Duration: 59:06
Speaker: : Jennifer Elam

How does the brain learn? This lecture discusses the roles of development and adult plasticity in shaping functional connectivity.

Difficulty level: Beginner
Duration: 1:08:45
Speaker: : Clay Reid

The mechanisms behind changes in synaptic function created by learning.

Difficulty level: Beginner
Duration: 27:07
Speaker: : Carl Petersen

From the retina to the superior colliculus, the lateral geniculate nucleus into primary visual cortex and beyond, this lecture gives a tour of the mammalian visual system highlighting the Nobel-prize winning discoveries of Hubel & Wiesel.

Difficulty level: Beginner
Duration: 56:31
Speaker: : Clay Reid