Skip to main content

Explore how to setup an epileptic seizure simulation with the TVB graphical user interface. This lesson will show you how to program the epileptor model in the brain network to simulate a epileptic seizure originating in the hippocampus. It will also show how to upload and view mouse connectivity data, as well as give a short introduction to the python script interface of TVB.

Difficulty level: Intermediate
Duration: 58:06
Speaker: : Paul Triebkorn

In this lesson you will learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper On the Nature of Seizure Dynamics, which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn
Course:

The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.

Difficulty level: Beginner
Duration: 55:36
Speaker: : Elissa Chesler

In this lesson, while learning about the need for increased large-scale collaborative science that is transparent in nature, users also are given a tutorial on using Synapse for facilitating reusable and reproducible research. 

Difficulty level: Beginner
Duration: 1:15:12
Speaker: : Abhi Pratap

The lecture provides an overview of the core skills and practical solutions required to practice reproducible research.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez
Course:

EyeWire is a game to map the brain. Players are challenged to map branches of a neuron from one side of a cube to the other in a 3D puzzle. Players scroll through the cube and reconstruct neurons with the help of an artificial intelligence algorithm developed at Seung Lab in Princeton University. EyeWire gameplay advances neuroscience by helping researchers discover how neurons connect to process visual information. 

Difficulty level: Beginner
Duration: 03:56
Speaker: : EyeWire
Course:

Mozak is a scientific discovery game about neuroscience for citizen scientists and neuroscientists alike. Players to help neuroscientists build models of brain cells and learn more about the brain through their efforts.

Difficulty level: Beginner
Duration: 00:43
Speaker: : Mozak

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics. 

Difficulty level: Intermediate
Duration: 1:27:18
Speaker: : Dan Felsky

This is a tutorial on using the open-source software PRSice to calculate a set of polygenic risk scores (PRS) for a study sample. Users will also learn how to read PRS into R, visualize distributions, and perform basic association analyses. 

Difficulty level: Intermediate
Duration: 1:53:34
Speaker: : Dan Felsky

This lesson provides a short reel on who we are, what we're doing and why we're doing it.

Difficulty level: Beginner
Duration: 2:38
Speaker: :

In this webinar, educators currently implementing collaborative annotation in their classrooms discuss their experiences with collaborative annotation and using Hythothes.is and Canvas App.

Difficulty level: Beginner
Duration: 53:14
Speaker: : Jeremy Dean

This tutorial provides an overview of how to use the feature of Hypothes.is.

Difficulty level: Beginner
Duration: 09:30
Speaker: :

This lesson gives a brief overview of the Hypothes.is functionality from an end user's perspective.

Difficulty level: Beginner
Duration: 5:36
Speaker: : Heather Staines

This video will teach you the basics of navigating the Open Science Framework and creating your first projects.

Difficulty level: Beginner
Duration: 2:11
Speaker: :

This webinar walks you through the basics of creating an OSF project, structuring it to fit your research needs, adding collaborators, and tying your favorite online tools into your project structure.

Difficulty level: Beginner
Duration: 55:02
Speaker: : Ian Sullivan

This webinar will introduce how to use the Open Science Framework (OSF) in a classroom setting.

Difficulty level: Beginner
Duration: 32:01

This lesson provides instruction on how to organize related projects with OSF features such as links, forks, and templates.

Difficulty level: Beginner
Duration: 51:14
Speaker: : Ian Sullivan

This webinar will introduce the integration of JASP Statistical Software with the Open Science Framework (OSF).

Difficulty level: Beginner
Duration: 30:56
Speaker: : Alexander Etz

This lesson describes the value of version control, as well as how to do so with your own files and data on OSF. 

Difficulty level: Beginner
Duration: 22:07

This lecture focuses on where and how Jupyter notebooks can be used most effectively for education.

Difficulty level: Beginner
Duration: 34:53
Speaker: : Thomas Kluyver