Course:

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate

Duration: 5:17

Speaker: : Mike X. Cohen

Course:

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate

Duration: 11:37

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.

Difficulty level: Intermediate

Duration: 5:31

Speaker: : Mike X. Cohen

Course:

Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.

Difficulty level: Intermediate

Duration: 13:48

Speaker: : Mike X. Cohen

Course:

This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.

Difficulty level: Intermediate

Duration: 13:11

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn about human brain signals as measured by electroencephalography (EEG), as well as associated neural signatures such as steady state visually evoked potentials (SSVEPs) and alpha oscillations.

Difficulty level: Intermediate

Duration: 8:51

Speaker: : Mike X. Cohen

Course:

This lecture describes the principles of EEG electrode placement in both 2- and 3-dimensional formats.

Difficulty level: Intermediate

Duration: 12:16

Speaker: : Mike X. Cohen

Course:

This tutorial walks users through performing Fourier Transform (FFT) spectral analysis of a single EEG channel using MATLAB.

Difficulty level: Intermediate

Duration: 13:39

Speaker: : Mike X. Cohen

Course:

This tutorial builds on the previous lesson's demonstration of spectral analysis of one EEG channel. Here, users will learn how to compute and visualize spectral power from all EEG channels using MATLAB.

Difficulty level: Intermediate

Duration: 12:34

Speaker: : Mike X. Cohen

Course:

In this lesson, users will learn more about the steady-state visually evoked potential (SSEVP), as well as how to create and interpret topographical maps derived from such studies.

Difficulty level: Intermediate

Duration: 9:10

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to extract edogenous brain waves from EEG data, specifically oscillations constrained to the 8-12 Hz frequency band, conventionally named alpha.

Difficulty level: Intermediate

Duration: 13:23

Speaker: : Mike X. Cohen

Course:

In the final lesson of this module, users will learn how to correlate endogenous alpha power with SSVEP amplitude from EEG data using MATLAB.

Difficulty level: Intermediate

Duration: 12:36

Speaker: : Mike X. Cohen

Course:

This lesson provides an introduction to biologically detailed computational modelling of neural dynamics, including neuron membrane potential simulation and F-I curves.

Difficulty level: Intermediate

Duration: 8:21

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn how to use MATLAB to build an adaptive exponential integrate and fire (AdEx) neuron model.

Difficulty level: Intermediate

Duration: 22:01

Speaker: : Mike X. Cohen

Course:

In this lesson, users learn about the practical differences between MATLAB scripts and functions, as well as how to embed their neuronal simulation into a callable function.

Difficulty level: Intermediate

Duration: 11:20

Speaker: : Mike X. Cohen

Course:

This lesson teaches users how to generate a frequency-current (F-I) curve, which describes the function that relates the net synaptic current (I) flowing into a neuron to its firing rate (F).

Difficulty level: Intermediate

Duration: 20:39

Speaker: : Mike X. Cohen

This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.

Difficulty level: Intermediate

Duration: 1:30:41

Speaker: : Frank Mazza

Course:

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity.

Difficulty level: Intermediate

Duration: 1:16:10

Speaker: : John Griffiths

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

This lesson corresponds to slides 65-90 of the PDF below.

Difficulty level: Intermediate

Duration: 1:15:04

Speaker: : Daniel Hauke

- (-) Electroencephalography (EEG) (10)
- Bayesian networks (2)
- Standards and Best Practices (1)
- Cognitive neuroinformatics (1)
- Event related potential (ERP) (1)
- Neuroimaging (19)
- Machine learning (1)
- Tools (1)
- Psychology (1)
- (-) General neuroscience (6)
- (-) Computational neuroscience (5)
- Statistics (3)
- Computer Science (1)
- Genomics (5)
- (-) Data science (4)
- Open science (3)