Skip to main content

In this lesson, users will learn about human brain signals as measured by electroencephalography (EEG), as well as associated neural signatures such as steady state visually evoked potentials (SSVEPs) and alpha oscillations. 

Difficulty level: Intermediate
Duration: 8:51
Speaker: : Mike X. Cohen

This lecture describes the principles of EEG electrode placement in both 2- and 3-dimensional formats. 

Difficulty level: Intermediate
Duration: 12:16
Speaker: : Mike X. Cohen

This tutorial walks users through performing Fourier Transform (FFT) spectral analysis of a single EEG channel using MATLAB. 

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

This tutorial builds on the previous lesson's demonstration of spectral analysis of one EEG channel. Here, users will learn how to compute and visualize spectral power from all EEG channels using MATLAB. 

Difficulty level: Intermediate
Duration: 12:34
Speaker: : Mike X. Cohen

In this lesson, users will learn more about the steady-state visually evoked potential (SSEVP), as well as how to create and interpret topographical maps derived from such studies. 

Difficulty level: Intermediate
Duration: 9:10
Speaker: : Mike X. Cohen

This lesson teaches users how to extract edogenous brain waves from EEG data, specifically oscillations constrained to the 8-12 Hz frequency band, conventionally named alpha. 

Difficulty level: Intermediate
Duration: 13:23
Speaker: : Mike X. Cohen

In the final lesson of this module, users will learn how to correlate endogenous alpha power with SSVEP amplitude from EEG data using MATLAB.

Difficulty level: Intermediate
Duration: 12:36
Speaker: : Mike X. Cohen

This lesson contains both a lecture and a tutorial component. The lecture (0:00-20:03 of YouTube video) discusses both the need for intersectional approaches in healthcare as well as the impact of neglecting intersectionality in patient populations. The lecture is followed by a practical tutorial in both Python and R on how to assess intersectional bias in datasets. Links to relevant code and data are found below. 

Difficulty level: Beginner
Duration: 52:26

This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics. 

Difficulty level: Intermediate
Duration: 1:27:18
Speaker: : Dan Felsky

This is a tutorial on using the open-source software PRSice to calculate a set of polygenic risk scores (PRS) for a study sample. Users will also learn how to read PRS into R, visualize distributions, and perform basic association analyses. 

Difficulty level: Intermediate
Duration: 1:53:34
Speaker: : Dan Felsky

This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.

Difficulty level: Intermediate
Duration: 1:30:41
Speaker: : Frank Mazza

In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity. 

Difficulty level: Intermediate
Duration: 1:16:10
Speaker: : John Griffiths

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton
Course:

Maximize Your Research With Cloud Workspaces is a talk aimed at researchers who are looking for innovative ways to set up and execute their life science data analyses in a collaborative, extensible, open-source cloud environment. This panel discussion is brought to you by MetaCell and scientists from leading universities who share their experiences of advanced analysis and collaborative learning through the Cloud.

 

Difficulty level: Beginner
Duration: 55:43

As researchers develop new non-invasive direct-to-consumer technologies that read and stimulate the brain, society must consider the appropriate uses of such devices. Will these brain technologies eventually allow enhancement of abilities beyond human capabilities? In what settings are people using these devices outside the purview of researchers or clinicians? Should consumers be allowed to ‘hack’ their own brain in order to improve performance?

To explore these challenges and the ethical issues raised by advances in do-it-yourself (DIY) neurotechnology, the Emerging Issues Task Force of the International Neuroethics Society organized a virtual panel discussion. The panel discussed neurotechnologies such as transcranial direct current stimulation (tDCS) and electroencephalogram (EEG) headsets and their ability to change the way we understand and alter our brains. Particular attention will be given to the use of neurotechnology by everyday people and the implications this has for regulatory oversight and citizen neuroscience. 

Panelists included:

  • Marcello Ienca, ETH Zurich
  • Karola Kreitmair, University of Wisconsin–Madison
  • Anna Wexler, University of Pennsylvania
  • Ishan Dasgupta, University of Washington (moderator)
Difficulty level: Beginner
Duration: 1:00:59

The INS Emerging Issues Task Force held a virtual panel discussion on the evolving role and increased adoption of digital applications to deliver mental health care. It was held as a session at the annual conference of the Italian Society for Neuroethics. Speakers were:

  • Nicole Martinez Martin, Stanford University
  • Cynthia Sieck, Ohio State University
  • John Torous, Harvard Medical School
  • Anthony Weiss, Beth Israel Deaconess Medical Center
Difficulty level: Beginner
Duration: 58:30

In February 2020, the Canadian Government published its "Roadmap for Open Science" to provide overarching principles and recommendations to guide Open Science activities in federally-funded scientific research.  It outlines broad guidelines for making science in Canada open to all while respecting privacy, security, ethical considerations and appropriate intellectual property protection.

Difficulty level: Beginner
Duration:
Speaker: :
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman