Skip to main content

This lecture covers an Introduction to neuron anatomy and signaling, and different types of models, including the Hodgkin-Huxley model.

Difficulty level: Beginner
Duration: 1:23:01
Speaker: : Gaute Einevoll

The tutorial is intended primarily for beginners, but it will also beneficial to experimentalists who understand electroencephalography and event related techniques, but need additional knowledge in annotation, standardization, long-term storage and publication of data.

Difficulty level: Beginner
Duration: 35:30

This lecture on generating TVB ready imaging data by Paul Triebkorn is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

This lecture 1/15 is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 0:40

This lecture (2/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 1:23


This lecture (3/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 1:20

This lecture (4/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 1:08

This lecture (5/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 1:18

This lecture (6/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures. Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 1:26

This lecture (7/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 0:42

This lecture (8/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 2:40

This lecture (9/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 2:54

This lecture (10/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 1:43

This lecture (11/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 2:58

This lecture (12/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate
Duration: 2:08