Skip to main content

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni
Course:

Agah Karakuzu takes a spaghetti script written in MATLAB and turns it into understandable and reusable code living happily in a powerful GitHub repository.

Difficulty level: Beginner
Duration: 02:08:19
Speaker: :
Course:

A quick walkthrough the Tidyverse, an "opinionated" collection of R packages designed for data science.  Includes the use of readr, dplyr, tidyr, and ggplot2.

Difficulty level: Beginner
Duration:
Speaker: :

This lecture covers the ethical implications of the use of pharmaceuticals to enhance brain functions and was part of the Neuro Day Workshop held by the NeuroSchool of Aix Marseille University.

Difficulty level: Beginner
Duration: 1:09:29
Speaker: : Eric Racine

The landscape of scientific research is changing. Today’s researchers need to participate in large-scale collaborations, obtain and manage funding, share data, publish, and undertake knowledge translation activities in order to be successful. As per these increasing demands, Science Management is now a vital piece of the environment.

Difficulty level: Beginner
Duration: 18:13
Speaker: : Mojib Javadi

Brought to you by the New Digital Infrastructure Organization.

 

In the past five years, researchers have seen a growing number of research data management (RDM) policies being implemented by funders, publishers, and institutions. One key element in meeting these requirements, particularly in terms of data discovery, is using metadata, which helps make research data findable, accessible, interoperable and reusable (the FAIR principles). This session discussed the secret life of your dataset metadata: the ways in which, for many years to come, it will work non-stop to foster the visibility, reach, and impact of your work. We explored how metadata will help your dataset travel through the global research infrastructure, and how data repositories and discovery services can use this (meta)data to help launch your dataset into the world.

 

Connect with us! Follow us on Twitter at @NDRIO_NOIRN and @PortageRDM_GDR.

 

For more information, visit our website: https://engagedri.ca/

Difficulty level: Beginner
Duration: 59:58
Speaker: :

Brought to you by the Canadian Association of Research Libraries.

 

Data management plans, or DMPs, are one of the foundations of good research data management. This DMP-focused webinar will be of interest to researchers, graduate students, librarians, and research support stakeholders, and will provide foundational information on developing DMPs. Topics covered will include the importance and benefits of DMPs, how they support research excellence, and what makes a ‘good’ DMP, as well as a detailed look at their standard content. Resources to help with the development of DMPs – including bilingual training materials, guidance documents and Exemplar DMPs – will be presented, as well as an update on the activities of the Portage DMP Expert Group, including forthcoming resources. A brief overview of the DMP Assistant platform will be provided, while a second separate session will deliver an in-depth look at the latest version of this platform, including its key features.

 

Speaker: James Doiron, Research Data Management Services Coordinator, University of Alberta Libraries

Difficulty level: Beginner
Duration: 01:01:55
Speaker: :

Brought to you by the Canadian Association of Research Libraries.

 

Data management plans, or DMPs, are one of the foundations of good research data management. Hosted by the University of Alberta Library and supported by the Portage Network, the DMP Assistant is a national, open, bilingual data management planning (DMP) tool to help researchers better manage their data throughout the lifespan of a project. The tool develops a DMP by prompting researchers to answer a number of key data management questions, supported by best-practice guidance and examples. Building on the preceding DMP-focused webinar, this session will be of interest to researchers, graduate students, librarians, and research support stakeholders. Participants will take an in-depth look at the newly launched DMP Assistant 2.0, including all of its enhanced key features for both end-users and institutional administrators, as well as a brief look at the future of the platform.

 

Speaker: Robyn Nicholson, Data Management Planning Coordinator, Portage Network

Difficulty level: Beginner
Duration: 01:03:51
Speaker: :

The Canadian Open Neuroscience Platform (CONP) Portal is a web interface that facilitates open science for the neuroscience community by simplifying global access to and sharing of datasets and tools. The Portal internalizes the typical cycle of a research project, beginning with data acquisition, followed by data processing with published tools, and ultimately the publication of results with a link to the original dataset.

 

In this video, Samir Das and Tristan Glatard give a short overview of the main features of the CONP Portal.

Difficulty level: Beginner
Duration: 14:03
Speaker: :

Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.

Difficulty level: Beginner
Duration: 1:00:39
Speaker: : Sharon Crook

Next generation science with Jupyter. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:28
Speaker: : Elizabeth DuPre

Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:25:17
Speaker: : Fernando Perez

Brought to you by the Canadian Association of Research Libraries.

 

Keeping data and research materials organized across all phases of the research process is always a challenging process. To help the research community address these challenges, the Center for Open Science developed the Open Science Framework (OSF), a research tool that supports collaboration, data management, and transparency throughout the research lifecycle. The OSF provides avenues for researchers to design a study; collect, analyze, and store data; manage collaborators; and publish research materials. In this webinar, attendees will learn about the many features of the OSF and develop strategies for using the tool within the context of their own research projects. The discussion will be framed around how to best utilize the OSF while also implementing data management and open science best practices.

 

Speakers Kevin Read, MLIS, MAS is a health sciences librarian at the University of Saskatchewan. He has been providing data services in health sciences libraries for the past 8 years in both Canada and the U.S. He is the current Chair of the Portage Network’s Data Discovery Expert Group, and is in the process of conducting research on how Canadian-funded researchers describe and share their data.

Difficulty level: Beginner
Duration:
Speaker: :

Neuroethics has been described as containing at least two components - the neuroscience of ethics and the ethics of neuroscience. The first involves neuroscientific theories, research, and neuro-imaging focused on how the brain arrives at moral decisions and actions, which challenge existing descriptive theories of how humans develop moral thinking and make ethical decisions. The second, ethics of neuroscience, involves applying normative theories about what is right, good and fair to ethical questions raised by neuroscientific research and new technologies, such as how to balance the public benefit of “big data” neuroscience while protecting individual privacy and norms of informed consent.

Difficulty level: Beginner
Duration: 38:49

The HBP as an ICT flagship project crucially relies on ICT and will contribute important input into the development of new computing principles and artefacts. Individuals working on the HBP should therefore be aware of the long history of ethical issues discussed in computing. The discourse on ethics and computing can be traced back to Norbert Wiener and the very beginning of digital computing. From the 1970s and 80s it has developed into an active discussion involving academics from various disciplines, professional bodies and industry.

Difficulty level: Beginner
Duration: 46:12
Speaker: : Bernd Stahl

Like any transformative technology, intelligent robotics has the potential for huge benefit, but is not without ethical or societal risk. In this lecture, I will explore two questions. Firstly, the increasingly urgent question of the ethical use of robots: are there particular applications of robots that should be proscribed, in eldercare, or surveillance, or war fighting for example? When intelligent autonomous robots make mistakes, as they inevitably will, who should be held to account? Secondly, I will consider the longer-term question of whether intelligent robots themselves could or should be ethical. Seventy years ago Isaac Asimov created his fictional Three Laws of Robotics. Is there now a realistic prospect that we could build a robot that is Three Laws Safe?

Difficulty level: Beginner
Duration: 31:35
Speaker: : Alan Winfield

In the face of perceived public concerns about technological innovations, leading national and international bodies increasingly argue that there must be ‘dialogue' between policy makers, scientific researchers, civil society organizations and members of the public, to shape the pathways of technology development in a way that meets societal needs and gains public trust. This is not new, of course, and such concerns go back at least to the debates over the development of nuclear technologies and campaigns for social responsibility in science. Major funding bodies in the UK, Europe and elsewhere are now addressing this issue by insisting on Responsible Research and Innovation (RRI) in the development of emerging technology. Biotechnologies such as synthetic biology and neurotechnologies have become a particular focus of RRI, partly because of the belief that these are risky technologies involving tinkering with the very building blocks of life, and perhaps even with human nature. With my fellow researchers, I have been involved in trying to develop Responsible Research and Innovation in these technologies for several years.

Difficulty level: Beginner
Duration: 50:15
Speaker: : Nikolas Rose

In this lecture, I consider some of the key social and ethical issues raised by the ‘big brain projects’ currently under way in Europe, the USA, China, Japan and many other regions. I will draw upon our own experience in the ‘ Foresight Lab’ of the HBP to discuss the ways in which these can usefully be approached from the perspective of responsible research and innovation and the AREA approach - anticipation, reflection, engagement and action. These include data protection, privacy and data governance; the search for ‘neural signatures’ of psychaitric and neurological disorders; ‘dual use’ or the military use of developments initially intended for clinical and civilian purposes; brain-computer interfaces and neural prosthetics; and the use of animals in brain research. Following a brief discussion of the challenges of translation from the lab to the real world, I will conclude by arguing that success in contemporary scientific research and innovation is best assured by openness, collaboration, sharing with fellow researchers; robust systems of data governance involving lay persons; frankness about realities of scientific research and innovation with fellow citizens; realism about complexities of links between researchers, publics and private enterprise; and understanding and engaging with the realities of science today in the real world.

Difficulty level: Beginner
Duration: 53:08
Speaker: : Nikolas Rose