Skip to main content

The Virtual Brain is an open-source, multi-scale, multi-modal brain simulation platform. In this lesson, you get introduced to brain simulation in general and to The Virtual brain in particular. Prof. Ritter will present the newest approaches for clinical applications of The Virtual brain - that is, for stroke, epilepsy, brain tumors and Alzheimer’s disease - and show how brain simulation can improve diagnostics, therapy and understanding of neurological disease.

Difficulty level: Beginner
Duration: 1:35:08
Speaker: : Petra Ritter

The concept of neural masses, an application of mean field theory, is introduced as a possible surrogate for electrophysiological signals in brain simulation. The mathematics of neural mass models and their integration to a coupled network are explained. Bifurcation analysis is presented as an important technique in the understanding of non-linear systems and as a fundamental method in the design of brain simulations. Finally, the application of the described mathematics is demonstrated in the exploration of brain stimulation regimes.

Difficulty level: Beginner
Duration: 1:49:24
Speaker: : Andreas Spiegler

The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner
Duration: 1:28:53
Speaker: : Julie Courtiol

Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.

Difficulty level: Beginner
Duration: 1:00:39
Speaker: : Sharon Crook

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

Introduction to the FAIR Principles and examples of applications of the FAIR Principles in neuroscience. This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 55:57

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python

Difficulty level: Intermediate
Duration: 45:46
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm

Difficulty level: Intermediate
Duration: 27:18
Speaker: : Oliver Ruebel

Learn how to build and share extensions in NWB

Difficulty level: Advanced
Duration: 20:29
Speaker: : Ryan Ly

Learn how to build custom APIs for extension

Difficulty level: Advanced
Duration: 25:40
Speaker: : Andrew Tritt

Learn how to handle writing very large data in PyNWB

Difficulty level: Advanced
Duration: 26:50
Speaker: : Andrew Tritt

Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB

Difficulty level: Intermediate
Duration: 45:46
Speaker: : Ben Dichter

Learn how to create a standard calcium imaging dataset in NWB using MATLAB

Difficulty level: Intermediate
Duration: 39:10
Speaker: : Ben Dichter

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker

Learn how to handle writing very large data in MatNWB

Difficulty level: Advanced
Duration: 16:18
Speaker: : Ben Dichter

Overview of the Braintorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition

Difficulty level: Intermediate
Duration: 47:47

Overview of the CaImAn package, and demonstration of usage with NWB

Difficulty level: Intermediate
Duration: 44:37

Overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters

Difficulty level: Intermediate
Duration: 1:10:28
Speaker: : Alessio Buccino