Skip to main content

Enabling neuroscience research using high performance computing

Difficulty level: Beginner
Duration: 39:27
Speaker: : Subha Sivagnanam

EEGLAB is an interactive Matlab toolbox for processing continuous and event-related EEG, MEG and other electrophysiological data incorporating independent component analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics, and several useful modes of visualization of the averaged and single-trial data. EEGLAB runs under Linux, Unix, Windows, and Mac OS X.

Difficulty level: Beginner
Duration: 15:32
Speaker: : Arnaud Delorme
Difficulty level: Beginner
Duration: 9:20
Speaker: :
Difficulty level: Beginner
Duration: 8:30
Speaker: : Arnaud Delorme
Difficulty level: Beginner
Duration: 13:01
Speaker: : Arnaud Delorme

This lecture on generating TVB ready imaging data by Paul Triebkorn is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

This lecture on multi-scale entropy by Jil Meier is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 39:05
Speaker: : Jil Meier

This lecture on modeling epilepsy using TVB by Julie Courtiol is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 37:12
Speaker: : Julie Courtiol
Course:

KnowledgeSpace is a community-based encyclopedia that links brain research concepts to data, models, and literature. It provides users with access to anatomy, gene expression, models, morphology, and physiology data from over 15 different neuroscience data/model repositories, such as Allen Institute for Brain Science and the Human Brain Project.

Difficulty level: Beginner
Duration: 0:58
Speaker: : Tom Gillespie
Difficulty level: Beginner
Duration: 1:03:29
Speaker: : Ruben Armananzas

Neuroethics has been described as containing at least two components - the neuroscience of ethics and the ethics of neuroscience. The first involves neuroscientific theories, research, and neuro-imaging focused on how the brain arrives at moral decisions and actions, which challenge existing descriptive theories of how humans develop moral thinking and make ethical decisions. The second, ethics of neuroscience, involves applying normative theories about what is right, good and fair to ethical questions raised by neuroscientific research and new technologies, such as how to balance the public benefit of “big data” neuroscience while protecting individual privacy and norms of informed consent.

Difficulty level: Beginner
Duration: 38:49

The HBP as an ICT flagship project crucially relies on ICT and will contribute important input into the development of new computing principles and artefacts. Individuals working on the HBP should therefore be aware of the long history of ethical issues discussed in computing. The discourse on ethics and computing can be traced back to Norbert Wiener and the very beginning of digital computing. From the 1970s and 80s it has developed into an active discussion involving academics from various disciplines, professional bodies and industry.

Difficulty level: Beginner
Duration: 46:12
Speaker: : Bernd Stahl

Like any transformative technology, intelligent robotics has the potential for huge benefit, but is not without ethical or societal risk. In this lecture, I will explore two questions. Firstly, the increasingly urgent question of the ethical use of robots: are there particular applications of robots that should be proscribed, in eldercare, or surveillance, or war fighting for example? When intelligent autonomous robots make mistakes, as they inevitably will, who should be held to account? Secondly, I will consider the longer-term question of whether intelligent robots themselves could or should be ethical. Seventy years ago Isaac Asimov created his fictional Three Laws of Robotics. Is there now a realistic prospect that we could build a robot that is Three Laws Safe?

Difficulty level: Beginner
Duration: 31:35
Speaker: : Alan Winfield