Skip to main content

How to start processing the raw imaging data generated with a Miniscope, including developing a usable pipeline and demoing the Minion pipeline

Difficulty level: Beginner
Duration: 00:57:26

The direction of miniature microscopes, including both MetaCell and other groups.

Difficulty level: Beginner
Duration: 00:49:16

Overview of the content for Day 2 of this course.

Difficulty level: Beginner
Duration: 00:11:01
Speaker: : Tristan Shuman

Summary and closing remarks for this three-day course.

Difficulty level: Beginner
Duration: 00:04:56
Speaker: : Stephen Larson

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 5:02
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 15:01
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 5:15
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 11:23
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 22:41
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 17:19
Speaker: : Mike X. Cohen

This lecture covers infrared LED oblique illumination for studying neuronal circuits in in vitro block-preparations of the spinal cord and brain stem.

Difficulty level: Beginner
Duration: 25:16
Speaker: : Péter Szucs

This lecture covers the application of diffusion MRI for clinical and preclinical studies.

Difficulty level: Beginner
Duration: 33:10
Speaker: : Silvia de Santis

Introduction to the Brain Imaging Data Structure (BIDS): a standard for organizing human neuroimaging datasets. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 56:49

This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 1:25:05
Speaker: : Satrajit Ghosh

This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:03:07
Speaker: : Russell Poldrack

This lecture was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 55:39
Speaker: : Angela Laird

This lecture on generating TVB ready imaging data by Paul Triebkorn is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience.  FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible,  Interoperable, and Reusable.  But FAIR is not a specification;  it leaves many of the specifics up to individual scientific disciplines to define.  INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience.  We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks.  In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience.  We will engage in a discussion on questions such as:  how is neuroscience doing with respect to FAIR?  What have been the successes?  What is currently very difficult? Where does neuroscience need to go? This lecture covers the needs and challenges involved in creating a FAIR ecosystem for neuroimaging research.

Difficulty level: Beginner
Duration: 12:26
Speaker: : Camille Maumet

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.

Difficulty level: Beginner
Duration: 12:33
Speaker: : David Keator