Learn how to create a standard calcium imaging dataset in NWB using Python
Learn how to create a standard intracellular electrophysiology dataset in NWB
Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm
Learn how to build and share extensions in NWB
Learn how to build custom APIs for extension
Learn how to handle writing very large data in PyNWB
Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB
Learn how to create a standard calcium imaging dataset in NWB using MATLAB
Learn how to create a standard intracellular electrophysiology dataset in NWB
Learn how to handle writing very large data in MatNWB
Overview of the Braintorm package for analyzing extracellular electrophysiology, including preprocessing, spike sorting, trial alignment, and spectrotemporal decomposition
Overview of the CaImAn package, and demonstration of usage with NWB
Overview of the SpikeInterface package, including demonstration of data loading, preprocessing, spike sorting, and comparison of spike sorters
Overview of the NWBWidgets package, including coverage of different data types, and information for building custom widgets within this framework
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.
This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.
This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture contains an overview of the Australian Electrophysiology Data Analytics Platform (AEDAPT), how it works, how to scale it, and how it fits into the FAIR ecosystem.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.
Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible, Interoperable and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been successes? What is currently very difficult? Where does neuroscience need to go?
This lecture will provide an overview of the INCF Training Suite, a collection of tools that embraces the FAIR principles developed by members of the INCF Community. This will include an overview of TrainingSpace, Neurostars, and KnowledgeSpace.
The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture contains an overview of the China-Cuba-Canada neuroinformatics ecosystem for Quantitative Tomographic EEG Analysis (qEEGt).