This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.
In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity.
This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment.
This lesson corresponds to slides 1-64 in the PDF below.
This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Overview of the content for Day 1 of this course.
Best practices: the tips and tricks on how to get your Miniscope to work and how to get your experiments off the ground.
"Balancing size & function in compact miniscopes" was presented by Tycho Hoogland at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.
"Computational imaging for miniature miniscopes" was presented by Laura Waller at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.
This lecture introduces neuroscience concepts and methods such as fMRI, visual respones in BOLD data, and the eccentricity of visual receptive fields.
This tutorial walks users through the creation and visualization of activation flat maps from fMRI datasets.
"Online 1-photon vs 2-photon calcium imaging data analysis: Current developments and future plans" was presented by Andrea Giovannucci at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.
This tutorial demonstrates to users the conventional preprocessing steps when working with BOLD signal datasets from fMRI.
In this tutorial, users will learn how to create a trial-averaged BOLD response and store it in a matrix in MATLAB.
This tutorial teaches users how to create animations of BOLD responses over time, to allow researchers and clinicians to visualize time-course activity patterns.
This tutorial demonstrates how to use MATLAB to create event-related BOLD time courses from fMRI datasets.
In this tutorial, users learn how to compute and visualize a t-test on experimental condition differences.
"Ensemble fluidity supports memory flexibility during spatial reversal" was presented by William Mau at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.
How to start processing the raw imaging data generated with a Miniscope, including developing a usable pipeline and demoing the Minion pipeline
The direction of miniature microscopes, including both MetaCell and other groups.