Skip to main content

In this lesson, you will learn in more detail about neuromorphic computing, that is, non-standard computational architectures that mimic some aspect of the way the brain works. 

Difficulty level: Intermediate
Duration: 10:08
Speaker: : Dan Goodman

This video provides a very quick introduction to some of the neuromorphic sensing devices, and how they offer unique, low-power applications.

Difficulty level: Intermediate
Duration: 2:37
Speaker: : Dan Goodman

This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.

Difficulty level: Intermediate
Duration: 1:09:33
Speaker: : Sean Hill

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

Whereas the previous two lessons described the biophysical and signalling properties of individual neurons, this lesson describes properties of those units when part of larger networks. 

Difficulty level: Intermediate
Duration: 6:00
Speaker: : Marcus Ghosh

This lesson goes over some examples of how machine learners and computational neuroscientists go about designing and building neural network models inspired by biological brain systems. 

Difficulty level: Intermediate
Duration: 12:52
Speaker: : Dan Goodman

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.

Difficulty level: Beginner
Duration: 2:24:35

This lecture provides an overview of depression (epidemiology and course of the disorder), clinical presentation, somatic co-morbidity, and treatment options.

Difficulty level: Beginner
Duration: 37:51

This lecture gives an introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32

This lecture covers the history of behaviorism and the ultimate challenge to behaviorism. 

Difficulty level: Beginner
Duration: 1:19:08

This lecture covers various learning theories.

Difficulty level: Beginner
Duration: 1:00:42

This lesson characterizes different types of learning in a neuroscientific and cellular context, and various models employed by researchers to investigate the mechanisms involved. 

Difficulty level: Intermediate
Duration: 3:54
Speaker: : Dan Goodman

In this lesson, you will learn about different approaches to modeling learning in neural networks, particularly focusing on system parameters such as firing rates and synaptic weights impact a network. 

Difficulty level: Intermediate
Duration: 9:40
Speaker: : Dan Goodman

This lecture provides an overview of some of the essential concepts in neuropharmacology (e.g. receptor binding, agonism, antagonism), an introduction to pharmacodynamics and pharmacokinetics, and an overview of the drug discovery process relative to diseases of the central nervous system. 

Difficulty level: Beginner
Duration: 45:47

This lesson describes the fundamentals of genomics, from central dogma to design and implementation of GWAS, to the computation, analysis, and interpretation of polygenic risk scores. 

Difficulty level: Intermediate
Duration: 1:28:16
Speaker: : Dan Felsky

This lesson contains the slides (pptx) of a lecture discussing the necessary concepts and tools for taking into account population stratification and admixture in the context of genome-wide association studies (GWAS). The free-access software Tractor and its advantages in GWAS are also discussed. 

Difficulty level: Intermediate
Duration:
Speaker: : Dan Felsky

This lesson is an overview of transcriptomics, from fundamental concepts of the central dogma and RNA sequencing at the single-cell level, to how genetic expression underlies diversity in cell phenotypes. 

Difficulty level: Intermediate
Duration: 1:29:08

In this lesson, you will learn about how genetics can contribute to our understanding of psychiatric phenotypes.

Difficulty level: Beginner
Duration: 55:15
Speaker: : Sven Cichon

In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience. 

Difficulty level: Beginner
Duration: 5:42
Speaker: : Dan Goodman