The state of the field regarding the diagnosis and treatment of major depressive disorder (MDD) is discussed. Current challenges and opportunities facing the research and clinical communities are outlined, including appropriate quantitative and qualitative analyses of the heterogeneity of biological, social, and psychiatric factors which may contribute to MDD.
This is the first of two workshops on reproducibility in science, during which participants are introduced to concepts of FAIR and open science. After discussing the definition of and need for FAIR science, participants are walked through tutorials on installing and using Github and Docker, the powerful, open-source tools for versioning and publishing code and software, respectively.
This lesson contains both a lecture and a tutorial component. The lecture (0:00-20:03 of YouTube video) discusses both the need for intersectional approaches in healthcare as well as the impact of neglecting intersectionality in patient populations. The lecture is followed by a practical tutorial in both Python and R on how to assess intersectional bias in datasets. Links to relevant code and data are found below.
This lesson delves into the opportunities and challenges of telepsychiatry. While novel digital approaches to clinical research and care have the potential to improve and accelerate patient outcomes, researchers and care providers must consider new population factors, such as digital disparity.
This lesson is an overview of transcriptomics, from fundamental concepts of the central dogma and RNA sequencing at the single-cell level, to how genetic expression underlies diversity in cell phenotypes.
This lesson gives a description of the BrainHealth Databank, a repository of many types of health-related data, whose aim is to accelerate research, improve care, and to help better understand and diagnose mental illness, as well as develop new treatments and prevention strategies.
This lesson corresponds to slides 46-78 of the PDF below.
This lecture discusses what defines an integrative approach regarding research and methods, including various study designs and models which are appropriate choices when attempting to bridge data domains; a necessity when whole-person modelling.
This lecture provides an introduction to Plato’s concept of rationality and Aristotle’s concept of empiricism, and the enduring discussion between rationalism and empiricism to this day.
This lecture goes into further detail about the hard problem of developing a scientific discipline for subjective consciousness.
This lecture covers a lot of post-war developments in the science of the mind, focusing first on the cognitive revolution, and concluding with living machines.
A basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
Introduction to simple spiking neuron models.
Introduction to simple spiking neuron models.
Introductory presentation on how data science can help with scientific reproducibility.
FAIR principles and methods currently in development for assessing FAIRness.
The landscape of scientific research is changing. Today’s researchers need to participate in large-scale collaborations, obtain and manage funding, share data, publish, and undertake knowledge translation activities in order to be successful. As per these increasing demands, Science Management is now a vital piece of the environment.
Audio slides presentation to accompany the paper titled: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. Authors: M. Schirner, S. Rothmeier, V. Jirsa, A.R. McIntosh, P. Ritter.
Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
This lecture is part of the Neuromatch Academy (NMA), a massive, interactive online summer school held in 2020 that provided participants with experiences spanning from hands-on modeling experience to meta-science interpretation skills across just about everything that could reasonably be included in the label "computational neuroscience".
This lecture on model types introduces the advantages of modeling, provide examples of different model types, and explain what modeling is all about. This lecture contains links to 3 tutorials, lecture/tutorial slides, suggested reading list, and 3 recorded question and answer sessions.