This lesson gives an introductory presentation on how data science can help with scientific reproducibility.
This lecture covers how to make modeling workflows FAIR by working through a practical example, dissecting the steps within the workflow, and detailing the tools and resources used at each step.
The state of the field regarding the diagnosis and treatment of major depressive disorder (MDD) is discussed. Current challenges and opportunities facing the research and clinical communities are outlined, including appropriate quantitative and qualitative analyses of the heterogeneity of biological, social, and psychiatric factors which may contribute to MDD.
This lesson delves into the opportunities and challenges of telepsychiatry. While novel digital approaches to clinical research and care have the potential to improve and accelerate patient outcomes, researchers and care providers must consider new population factors, such as digital disparity.
This lesson provides a basic introduction to clinical presentation of schizophrenia, its etiology, and current treatment options.
This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.
This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.
In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.
Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.
This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.
In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.
This lecture provides an introduction to Plato’s concept of rationality and Aristotle’s concept of empiricism, and the enduring discussion between rationalism and empiricism to this day.
This lecture goes into further detail about the hard problem of developing a scientific discipline for subjective consciousness.
This lesson gives a brief introduction to the course Neuroscience for Machine Learners (Neuro4ML).
This lesson covers the history of neuroscience and machine learning, and the story of how these two seemingly disparate fields are increasingly merging.
In this lesson, you will learn about the current challenges facing the integration of machine learning and neuroscience.
This lesson goes over the basic mechanisms of neural synapses, the space between neurons where signals may be transmitted.
While the previous lesson in the Neuro4ML course dealt with the mechanisms involved in individual synapses, this lesson discusses how synapses and their neurons' firing patterns may change over time.
This lesson introduces some practical exercises which accompany the Synapses and Networks portion of this Neuroscience for Machine Learners course.
As the previous lesson of this course described how researchers acquire neural data, this lesson will discuss how to go about interpreting and analysing the data.