In this lesson, users will learn how to appropriately sort and bin neural spikes, allowing for the generation of a common and powerful visualization tool in neuroscience, the histogram.
Followers of this lesson will learn how to compute, visualize and quantify the tuning curves of individual neurons.
This lesson demonstrates how to programmatically generate a spatial map of neuronal spike counts using MATLAB.
In this lesson, users are shown how to create a spatial map of neuronal orientation tuning.
This lecture provides an introduction to Plato’s concept of rationality and Aristotle’s concept of empiricism, and the enduring discussion between rationalism and empiricism to this day.
This lecture goes into further detail about the hard problem of developing a scientific discipline for subjective consciousness.
This lesson contains both a lecture and a tutorial component. The lecture (0:00-20:03 of YouTube video) discusses both the need for intersectional approaches in healthcare as well as the impact of neglecting intersectionality in patient populations. The lecture is followed by a practical tutorial in both Python and R on how to assess intersectional bias in datasets. Links to relevant code and data are found below.
This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).
This lesson corresponds to slides 65-90 of the PDF below.
This lecture discusses what defines an integrative approach regarding research and methods, including various study designs and models which are appropriate choices when attempting to bridge data domains; a necessity when whole-person modelling.
Similarity Network Fusion (SNF) is a computational method for data integration across various kinds of measurements, aimed at taking advantage of the common as well as complementary information in different data types. This workshop walks participants through running SNF on EEG and genomic data using RStudio.
This is the first of two workshops on reproducibility in science, during which participants are introduced to concepts of FAIR and open science. After discussing the definition of and need for FAIR science, participants are walked through tutorials on installing and using Github and Docker, the powerful, open-source tools for versioning and publishing code and software, respectively.
This is a hands-on tutorial on PLINK, the open source whole genome association analysis toolset. The aims of this tutorial are to teach users how to perform basic quality control on genetic datasets, as well as to identify and understand GWAS summary statistics.
This is a tutorial on using the open-source software PRSice to calculate a set of polygenic risk scores (PRS) for a study sample. Users will also learn how to read PRS into R, visualize distributions, and perform basic association analyses.
Introduction to reproducible research. The lecture provides an overview of the core skills and practical solutions required to practice reproducible research. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.
Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible, Interoperable, and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been the successes? What is currently very difficult? Where does neuroscience need to go? This lecture covers the biomedical researcher's perspective on FAIR data sharing and the importance of finding better ways to manage large datasets.
Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high-level principles and practices for making digital objects, including data, software, and workflows, Findable, Accessible, Interoperable, and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining, and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry, and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been the successes? What is currently very difficult? Where does neuroscience need to go? This lecture covers multiple aspects of FAIR neuroscience data: what makes it unique, the challenges to making it FAIR, the importance of overcoming these challenges, and how data governance comes into play.
Since their introduction in 2016, the FAIR data principles have gained increasing recognition and adoption in global neuroscience. FAIR defines a set of high level principles and practices for making digital objects, including data, software and workflows, Findable, Accessible, Interoperable and Reusable. But FAIR is not a specification; it leaves many of the specifics up to individual scientific disciplines to define. INCF has been leading the way in promoting, defining and implementing FAIR data practices for neuroscience. We have been bringing together researchers, infrastructure providers, industry and publishers through our programs and networks. In this session, we will hear some perspectives on FAIR neuroscience from some of these stakeholders who have been working to develop and use FAIR tools for neuroscience. We will engage in a discussion on questions such as: how is neuroscience doing with respect to FAIR? What have been successes? What is currently very difficult? Where does neuroscience need to go?
This lecture will provide an overview of Addgene, a tool that embraces the FAIR principles developed by members of the INCF Community. This will include an overview of Addgene, their mission, and available resources.
The International Brain Initiative (IBI) is a consortium of the world’s major large-scale brain initiatives and other organizations with a vested interest in catalyzing and advancing neuroscience research through international collaboration and knowledge sharing. This session will introduce the IBI and the current efforts of the Data Standards and Sharing Working Group with a view to gain input from a wider neuroscience and neuroinformatics community
This lecture covers the IBI Data Standards and Sharing Working Group, including its history, aims, and projects.
The International Brain Initiative (IBI) is a consortium of the world’s major large-scale brain initiatives and other organizations with a vested interest in catalyzing and advancing neuroscience research through international collaboration and knowledge sharing. This session will introduce the IBI and the current efforts of the Data Standards and Sharing Working Group with a view to gain input from a wider neuroscience and neuroinformatics community. This session covers the framework of the International Brain Lab (IBL) and the data architecture used for this project.
The FOSTER portal has produced a number of guides to help implement Open Science practices in daily workflows, including The Open Science Training Handbook. It provides many basic definitions, concepts, and principles that are key components of open science, as well as general guidance for developing and implementing these practices in one's own research environments.
Topics include: