Skip to main content

This lesson is an overview of transcriptomics, from fundamental concepts of the central dogma and RNA sequencing at the single-cell level, to how genetic expression underlies diversity in cell phenotypes. 

Difficulty level: Intermediate
Duration: 1:29:08

This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.

Difficulty level: Intermediate
Duration: 1:11:04
Speaker: : Etay Hay

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health. 

Difficulty level: Intermediate
Duration: 1:47:22

This is an introductory lecture on whole-brain modelling, delving into the various spatial scales of neuroscience, neural population models, and whole-brain modelling. Additionally, the clinical applications of building and testing such models are characterized. 

Difficulty level: Intermediate
Duration: 1:24:44
Speaker: : John Griffiths

This lesson breaks down the principles of Bayesian inference and how it relates to cognitive processes and functions like learning and perception. It is then explained how cognitive models can be built using Bayesian statistics in order to investigate how our brains interface with their environment. 

This lesson corresponds to slides 1-64 in the PDF below. 

Difficulty level: Intermediate
Duration: 1:28:14

This lesson gives a description of the BrainHealth Databank, a repository of many types of health-related data, whose aim is to accelerate research, improve care, and to help better understand and diagnose mental illness, as well as develop new treatments and prevention strategies. 

 

This lesson corresponds to slides 46-78 of the PDF below. 

Difficulty level: Beginner
Duration: 1:12:25
Speaker: : Joanna Yu

This lecture discusses what defines an integrative approach regarding research and methods, including various study designs and models which are appropriate choices when attempting to bridge data domains; a necessity when whole-person modelling. 

Difficulty level: Beginner
Duration: 1:28:14
Speaker: : Dan Felsky

This lecture covers the history of behaviorism and the ultimate challenge to behaviorism. 

Difficulty level: Beginner
Duration: 1:19:08

This lecture covers various learning theories.

Difficulty level: Beginner
Duration: 1:00:42

In this lecture, you will learn about current methods, approaches, and challenges to studying human neuroanatomy, particularly through the lense of neuroimaging data such as fMRI and diffusion tensor imaging (DTI). 

Difficulty level: Intermediate
Duration: 1:35:14
Speaker: : Matt Glasser

This lesson provides a thorough description of neuroimaging development over time, both conceptually and technologically. You will learn about the fundamentals of imaging techniques such as MRI and PET, as well as how the resultant data may be used to generate novel data visualization schemas. 

Difficulty level: Beginner
Duration: 1:43:57
Speaker: : Jack Van Horn

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe

This lecture covers a wide range of aspects regarding neuroinformatics and data governance, describing both their historical developments and current trajectories. Particular tools, platforms, and standards to make your research more FAIR are also discussed.

Difficulty level: Beginner
Duration: 54:58
Speaker: : Franco Pestilli

This lecture describes how to build research workflows, including a demonstrate using DataJoint Elements to build data pipelines.

Difficulty level: Intermediate
Duration: 47:00
Speaker: : Dimitri Yatsenko

In this final lecture of the INCF Short Course: Introduction to Neuroinformatics, you will hear about new advances in the application of machine learning methods to clinical neuroscience data. In particular, this talk discusses the performance of SynthSeg, an image segmentation tool for automated analysis of highly heterogeneous brain MRI clinical scans.

Difficulty level: Intermediate
Duration: 1:32:01

Whereas the previous two lessons described the biophysical and signalling properties of individual neurons, this lesson describes properties of those units when part of larger networks. 

Difficulty level: Intermediate
Duration: 6:00
Speaker: : Marcus Ghosh

This lesson goes over some examples of how machine learners and computational neuroscientists go about designing and building neural network models inspired by biological brain systems. 

Difficulty level: Intermediate
Duration: 12:52
Speaker: : Dan Goodman

This lesson characterizes different types of learning in a neuroscientific and cellular context, and various models employed by researchers to investigate the mechanisms involved. 

Difficulty level: Intermediate
Duration: 3:54
Speaker: : Dan Goodman

In this lesson, you will learn about different approaches to modeling learning in neural networks, particularly focusing on system parameters such as firing rates and synaptic weights impact a network. 

Difficulty level: Intermediate
Duration: 9:40
Speaker: : Dan Goodman

This lesson explores how researchers try to understand neural networks, particularly in the case of observing neural activity. 

Difficulty level: Intermediate
Duration: 8:20
Speaker: : Marcus Ghosh