This lecture discusses how FAIR practices affect personalized data models, including workflows, challenges, and how to improve these practices.
In this talk, you will learn how brainlife.io works, and how it can be applied to neuroscience data.
As a part of NeuroHackademy 2020, this lecture delves into cloud computing, focusing on Amazon Web Services.
Overview of the content for Day 1 of this course.
Best practices: the tips and tricks on how to get your Miniscope to work and how to get your experiments off the ground.
This talk delves into challenges and opportunities of Miniscope design, seeking the optimal balance between scale and function.
Attendees of this talk will learn aobut computational imaging systems and associated pipelines, as well as open-source software solutions supporting miniscope use.
This talk covers the present state and future directions of calcium imaging data analysis, particularly in the context of one-photon vs two-photon approaches.
In this talk, results from rodent experimentation using in vivo imaging are presented, demonstrating how the monitoring of neural ensembles may reveal patterns of learning during spatial tasks.
How to start processing the raw imaging data generated with a Miniscope, including developing a usable pipeline and demoing the Minion pipeline.
The direction of miniature microscopes, including both MetaCell and other groups.
Overview of the content for Day 2 of this course.
Summary and closing remarks for this three-day course.
This lecture covers infrared LED oblique illumination for studying neuronal circuits in in vitro block-preparations of the spinal cord and brain stem.
This lecture covers the application of diffusion MRI for clinical and preclinical studies.
This lecture will provide an overview of neuroimaging techniques and their clinical applications.
This lecture provides an introduction to the Brain Imaging Data Structure (BIDS), a standard for organizing human neuroimaging datasets.
This lecture provides an introduction to reproducibility issues within the fields of neuroimaging and fMRI, as well as an overview of tools and resources being developed to alleviate the problem.
This lecture provides a historical perspective on reproducibility in science, as well as the current limitations of neuroimaging studies to date. This lecture also lays out a case for the use of meta-analyses, outlining available resources to conduct such analyses.
This lecture covers the needs and challenges involved in creating a FAIR ecosystem for neuroimaging research.