Skip to main content

The Virtual Brain is an open-source, multi-scale, multi-modal brain simulation platform. In this lesson, you get introduced to brain simulation in general and to The Virtual brain in particular. Prof. Ritter will present the newest approaches for clinical applications of The Virtual brain - that is, for stroke, epilepsy, brain tumors and Alzheimer’s disease - and show how brain simulation can improve diagnostics, therapy and understanding of neurological disease.

Difficulty level: Beginner
Duration: 1:35:08
Speaker: : Petra Ritter

The concept of neural masses, an application of mean field theory, is introduced as a possible surrogate for electrophysiological signals in brain simulation. The mathematics of neural mass models and their integration to a coupled network are explained. Bifurcation analysis is presented as an important technique in the understanding of non-linear systems and as a fundamental method in the design of brain simulations. Finally, the application of the described mathematics is demonstrated in the exploration of brain stimulation regimes.

Difficulty level: Beginner
Duration: 1:49:24
Speaker: : Andreas Spiegler

The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner
Duration: 1:28:53
Speaker: : Julie Courtiol

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre

This lecture on generating TVB ready imaging data by Paul Triebkorn is part of the TVB Node 10 series, a 4 day workshop dedicated to learning about The Virtual Brain, brain imaging, brain simulation, personalised brain models, TVB use cases, etc. TVB is a full brain simulation platform.

Difficulty level: Intermediate
Duration: 1:40:52
Speaker: : Paul Triebkorn

This module covers many of the types of non-invasive neurotech and neuroimaging devices including Electroencephalography (EEG), Electromyography (EMG), Electroneurography (ENG), Magnetoencephalography (MEG), functional Near-Infrared Spectroscopy (fNRIs), Magnetic Resonance Imaging (MRI), Positron Emission Tomography (PET), and Computed Tomography

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

Introduction to the types of glial cells, homeostasis (influence of cerebral blood flow and influence on neurons), insulation and protection of axons (myelin sheath; nodes of Ranvier), microglia and reactions of the CNS to injury.

Difficulty level: Beginner
Duration: 40:32

This lecture provides an introduction to the application of genetic testing in neurodevelopmental disorders.

Difficulty level: Beginner
Duration: 37:47

How genetics can contribute to our understanding of psychiatric phenotypes.

Difficulty level: Beginner
Duration: 55:15
Speaker: : Sven Cichon

The landscape of scientific research is changing. Today’s researchers need to participate in large-scale collaborations, obtain and manage funding, share data, publish, and undertake knowledge translation activities in order to be successful. As per these increasing demands, Science Management is now a vital piece of the environment.

Difficulty level: Beginner
Duration: 18:13
Speaker: : Mojib Javadi

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers the NIDM data format within BIDS to make your datasets more searchable, and how to optimize your dataset searches.

Difficulty level: Beginner
Duration: 12:33
Speaker: : David Keator

Over the last three decades, neuroimaging research has seen large strides in the scale, diversity, and complexity of studies, the open availability of data and methodological resources, the quality of instrumentation and multimodal studies, and the number of researchers and consortia. The awareness of rigor and reproducibility has increased with the advent of funding mandates, and with the work done by national and international brain initiatives. This session will focus on the question of FAIRness in neuroimaging research touching on each of the FAIR elements through brief vignettes of ongoing research and challenges faced by the community to enact these principles. This lecture covers positron emission tomography (PET) imaging and the Brain Imaging Data Structure (BIDS), and how they work together within the PET-BIDS standard to make neuroscience more open and FAIR.

Difficulty level: Beginner
Duration: 12:06
Speaker: : Melanie Ganz

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture contains an overview of electrophysiology data reuse within the EBRAINS ecosystem.

Difficulty level: Beginner
Duration: 15:57
Speaker: : Andrew Davison

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives.

 

This lecture contains an overview of the Distributed Archives for Neurophysiology Data Integration (DANDI) archive, its ties to FAIR and open-source, integrations with other programs, and upcoming features.

Difficulty level: Beginner
Duration: 13:34

The course is an introduction to the field of electrophysiology standards, infrastructure, and initiatives. This lecture discusses how to standardize electrophysiology data organization to move towards being more FAIR.

Difficulty level: Beginner
Duration: 15:51

Brought to you by the New Digital Infrastructure Organization.

 

In the past five years, researchers have seen a growing number of research data management (RDM) policies being implemented by funders, publishers, and institutions. One key element in meeting these requirements, particularly in terms of data discovery, is using metadata, which helps make research data findable, accessible, interoperable and reusable (the FAIR principles). This session discussed the secret life of your dataset metadata: the ways in which, for many years to come, it will work non-stop to foster the visibility, reach, and impact of your work. We explored how metadata will help your dataset travel through the global research infrastructure, and how data repositories and discovery services can use this (meta)data to help launch your dataset into the world.

 

Connect with us! Follow us on Twitter at @NDRIO_NOIRN and @PortageRDM_GDR.

 

For more information, visit our website: https://engagedri.ca/

Difficulty level: Beginner
Duration: 59:58
Speaker: :

Brought to you by the Canadian Association of Research Libraries.

 

Data management plans, or DMPs, are one of the foundations of good research data management. This DMP-focused webinar will be of interest to researchers, graduate students, librarians, and research support stakeholders, and will provide foundational information on developing DMPs. Topics covered will include the importance and benefits of DMPs, how they support research excellence, and what makes a ‘good’ DMP, as well as a detailed look at their standard content. Resources to help with the development of DMPs – including bilingual training materials, guidance documents and Exemplar DMPs – will be presented, as well as an update on the activities of the Portage DMP Expert Group, including forthcoming resources. A brief overview of the DMP Assistant platform will be provided, while a second separate session will deliver an in-depth look at the latest version of this platform, including its key features.

 

Speaker: James Doiron, Research Data Management Services Coordinator, University of Alberta Libraries

Difficulty level: Beginner
Duration: 01:01:55
Speaker: :