Skip to main content

The Virtual Brain is an open-source, multi-scale, multi-modal brain simulation platform. In this lesson, you get introduced to brain simulation in general and to The Virtual brain in particular. Prof. Ritter will present the newest approaches for clinical applications of The Virtual brain - that is, for stroke, epilepsy, brain tumors and Alzheimer’s disease - and show how brain simulation can improve diagnostics, therapy and understanding of neurological disease.

Difficulty level: Beginner
Duration: 1:35:08
Speaker: : Petra Ritter

The concept of neural masses, an application of mean field theory, is introduced as a possible surrogate for electrophysiological signals in brain simulation. The mathematics of neural mass models and their integration to a coupled network are explained. Bifurcation analysis is presented as an important technique in the understanding of non-linear systems and as a fundamental method in the design of brain simulations. Finally, the application of the described mathematics is demonstrated in the exploration of brain stimulation regimes.

Difficulty level: Beginner
Duration: 1:49:24
Speaker: : Andreas Spiegler

The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner
Duration: 1:28:53
Speaker: : Julie Courtiol

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

The goal of this module is to work with action potential data taken from a publicly available database. You will learn about spike counts, orientation tuning, and spatial maps. The MATLAB code introduces data types, for-loops and vectorizations, indexing, and data visualization.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

In this module, you will work with human EEG data recorded during a steady-state visual evoked potential study (SSVEP, aka flicker). You will learn about spectral analysis, alpha activity, and topographical mapping. The MATLAB code introduces functions, sorting, and correlation analysis.

Difficulty level: Intermediate
Duration: 8:51
Speaker: : Mike X. Cohen
Course:

Agah Karakuzu takes a spaghetti script written in MATLAB and turns it into understandable and reusable code living happily in a powerful GitHub repository.

Difficulty level: Beginner
Duration: 02:08:19
Speaker: :
Course:

A quick walkthrough the Tidyverse, an "opinionated" collection of R packages designed for data science.  Includes the use of readr, dplyr, tidyr, and ggplot2.

Difficulty level: Beginner
Duration:
Speaker: :

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

Learn how to use the icephys-metadata extension to enter meta-data detailing your experimental paradigm

Difficulty level: Intermediate
Duration: 27:18
Speaker: : Oliver Ruebel

Learn how to build and share extensions in NWB

Difficulty level: Advanced
Duration: 20:29
Speaker: : Ryan Ly

Learn how to build custom APIs for extension

Difficulty level: Advanced
Duration: 25:40
Speaker: : Andrew Tritt

Learn how to handle writing very large data in PyNWB

Difficulty level: Advanced
Duration: 26:50
Speaker: : Andrew Tritt

Learn how to create a standard extracellular electrophysiology dataset in NWB using MATLAB

Difficulty level: Intermediate
Duration: 45:46
Speaker: : Ben Dichter

Learn how to create a standard calcium imaging dataset in NWB using MATLAB

Difficulty level: Intermediate
Duration: 39:10
Speaker: : Ben Dichter

Learn how to create a standard intracellular electrophysiology dataset in NWB

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker