Skip to main content

Overview of the content for Day 1 of this course.

Difficulty level: Beginner
Duration: 00:01:59
Speaker: : Tristan Shuman

This tutorial demonstrates how to work with neuronal data using MATLAB, including actional potentials and spike counts, orientation tuing curves in visual cortex, and spatial maps of firing rates.

Difficulty level: Intermediate
Duration: 5:17
Speaker: : Mike X. Cohen

This lesson instructs users on how to import electrophysiological neural data into MATLAB, as well as how to convert spikes to a data matrix.

Difficulty level: Intermediate
Duration: 11:37
Speaker: : Mike X. Cohen

In this lesson, users will learn about human brain signals as measured by electroencephalography (EEG), as well as associated neural signatures such as steady state visually evoked potentials (SSVEPs) and alpha oscillations. 

Difficulty level: Intermediate
Duration: 8:51
Speaker: : Mike X. Cohen

Best practices: the tips and tricks on how to get your Miniscope to work and how to get your experiments off the ground.

Difficulty level: Beginner
Duration: 00:53:34

This talk delves into challenges and opportunities of Miniscope design, seeking the optimal balance between scale and function.

Difficulty level: Beginner
Duration: 00:21:51

Attendees of this talk will learn aobut computational imaging systems and associated pipelines, as well as open-source software solutions supporting miniscope use.

Difficulty level: Beginner
Duration: 00:17:56

This talk covers the present state and future directions of calcium imaging data analysis, particularly in the context of one-photon vs two-photon approaches. 

Difficulty level: Beginner
Duration: 00:21:06

In this talk, results from rodent experimentation using in vivo imaging are presented, demonstrating how the monitoring of neural ensembles may reveal patterns of learning during spatial tasks.

Difficulty level: Beginner
Duration: 00:19:43

How to start processing the raw imaging data generated with a Miniscope, including developing a usable pipeline and demoing the Minion pipeline.

Difficulty level: Beginner
Duration: 00:57:26

The direction of miniature microscopes, including both MetaCell and other groups.

Difficulty level: Beginner
Duration: 00:49:16

Overview of the content for Day 2 of this course.

Difficulty level: Beginner
Duration: 00:11:01
Speaker: : Tristan Shuman

Summary and closing remarks for this three-day course.

Difficulty level: Beginner
Duration: 00:04:56
Speaker: : Stephen Larson

This lecture covers infrared LED oblique illumination for studying neuronal circuits in in vitro block-preparations of the spinal cord and brain stem.

Difficulty level: Beginner
Duration: 25:16
Speaker: : Péter Szucs

This lecture provides an introduction to the study of eye-tracking in humans. 

Difficulty level: Beginner
Duration: 34:05
Speaker: : Ulrich Ettinger

This lecture covers the application of diffusion MRI for clinical and preclinical studies.

Difficulty level: Beginner
Duration: 33:10
Speaker: : Silvia de Santis

This lesson is a general overview of overarching concepts in neuroinformatics research, with a particular focus on clinical approaches to defining, measuring, studying, diagnosing, and treating various brain disorders. Also described are the complex, multi-level nature of brain disorders and the data associated with them, from genes and individual cells up to cortical microcircuits and whole-brain network dynamics. Given the heterogeneity of brain disorders and their underlying mechanisms, this lesson lays out a case for multiscale neuroscience data integration.

Difficulty level: Intermediate
Duration: 1:09:33
Speaker: : Sean Hill

This lesson continues with the second workshop on reproducible science, focusing on additional open source tools for researchers and data scientists, such as the R programming language for data science, as well as associated tools like RStudio and R Markdown. Additionally, users are introduced to Python and iPython notebooks, Google Colab, and are given hands-on tutorials on how to create a Binder environment, as well as various containers in Docker and Singularity.

Difficulty level: Beginner
Duration: 1:16:04

This lesson gives an in-depth introduction of ethics in the field of artificial intelligence, particularly in the context of its impact on humans and public interest. As the healthcare sector becomes increasingly affected by the implementation of ever stronger AI algorithms, this lecture covers key interests which must be protected going forward, including privacy, consent, human autonomy, inclusiveness, and equity. 

Difficulty level: Beginner
Duration: 1:22:06
Speaker: : Daniel Buchman

This is a tutorial introducing participants to the basics of RNA-sequencing data and how to analyze its features using Seurat. 

Difficulty level: Intermediate
Duration: 1:19:17
Speaker: : Sonny Chen