Skip to main content

This lesson discusses FAIR principles and methods currently in development for assessing FAIRness.

Difficulty level: Beginner
Duration:
Speaker: : Michel Dumontier

This lesson describes the principles underlying functional magnetic resonance imaging (fMRI), diffusion-weighted imaging (DWI), tractography, and parcellation. These tools and concepts are explained in a broader context of neural connectivity and mental health. 

Difficulty level: Intermediate
Duration: 1:47:22

This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices. 

Difficulty level: Intermediate
Duration: 1:39:04

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system. 

Difficulty level: Intermediate
Duration: 4:10
Speaker: : Dan Goodman

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks. 

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec

This opening lecture from INCF's Short Course in Neuroinformatics provides an overview of the field of neuroinformatics itself, as well as laying out an argument for the necessity for developing more sophisticated approaches towards FAIR data management principles in neuroscience. 

Difficulty level: Beginner
Duration: 1:19:14
Speaker: : Maryann Martone

This lesson continues from part one of the lecture Ontologies, Databases, and Standards, diving deeper into a description of ontologies and knowledg graphs. 

Difficulty level: Intermediate
Duration: 50:18
Speaker: : Jeff Grethe

This lesson aims to define computational neuroscience in general terms, while providing specific examples of highly successful computational neuroscience projects. 

Difficulty level: Beginner
Duration: 59:21
Speaker: : Alla Borisyuk

This lecture covers a wide range of aspects regarding neuroinformatics and data governance, describing both their historical developments and current trajectories. Particular tools, platforms, and standards to make your research more FAIR are also discussed.

Difficulty level: Beginner
Duration: 54:58
Speaker: : Franco Pestilli

Introduction of the Foundations of Machine Learning in Python course - Day 01.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Beginner
Duration: 35:24
Speaker: : Elena Trunz

Optimization for machine learning - Day 02 lecture of the Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 34:52
Speaker: : Moritz Wolter

Linear Algebra for Machine Learning - Day 03 lecture of the Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 57.45
Speaker: : Moritz Wolter

Support Vector Machines -  Day 06 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 53.39
Speaker: : Elena Trunz

Decision Trees and Random Forests -  Day 07 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 1:15:39
Speaker: : Elena Trunz

Clustering and Density Estimation -  Day 08 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 59:35
Speaker: : Elena Trunz

Dimensionality Reduction -  Day 09 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 51:02
Speaker: : Elena Trunz

Introduction to Neural Networks -  Day 10 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 54:12
Speaker: : Moritz Wolter

Introduction to Convolutional Neural Networks  -  Day 11 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 42:07
Speaker: : Moritz Wolter

Initialization, Optimization, and Regularization  -  Day 12 lecture of the  Foundations of Machine Learning in Python course.

High-Performance Computing and Analytics Lab, University of Bonn

Difficulty level: Advanced
Duration: 42:07
Speaker: : Moritz Wolter