Skip to main content

In this third and final hands-on tutorial from the Research Workflows for Collaborative Neuroscience workshop, you will learn about workflow orchestration using open source tools like DataJoint and Flyte. 

Difficulty level: Intermediate
Duration: 22:36
Speaker: : Daniel Xenes

In this hands-on session, you will learn how to explore and work with DataLad datasets, containers, and structures using Jupyter notebooks. 

Difficulty level: Beginner
Duration: 58:05

This lesson introduces the practical exercises which accompany the previous lessons on animal and human connectomes in the brain and nervous system. 

Difficulty level: Intermediate
Duration: 4:10
Speaker: : Dan Goodman

This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

Learn how to create a standard extracellular electrophysiology dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 23:10
Speaker: : Ryan Ly

Learn how to create a standard calcium imaging dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 31:04
Speaker: : Ryan Ly

In this tutorial, you will learn how to create a standard intracellular electrophysiology dataset in NWB using Python.

Difficulty level: Intermediate
Duration: 20:23
Speaker: : Pamela Baker

Learn how to create a standard intracellular electrophysiology dataset in NWB.

Difficulty level: Intermediate
Duration: 20:22
Speaker: : Pamela Baker
Course:

This book was written with the goal of introducing researchers and students in a variety of research fields to the intersection of data science and neuroimaging. This book reflects our own experience of doing research at the intersection of data science and neuroimaging and it is based on our experience working with students and collaborators who come from a variety of backgrounds and have a variety of reasons for wanting to use data science approaches in their work. The tools and ideas that we chose to write about are all tools and ideas that we have used in some way in our own research. Many of them are tools that we use on a daily basis in our work. This was important to us for a few reasons: the first is that we want to teach people things that we ourselves find useful. Second, it allowed us to write the book with a focus on solving specific analysis tasks. For example, in many of the chapters you will see that we walk you through ideas while implementing them in code, and with data. We believe that this is a good way to learn about data analysis, because it provides a connecting thread from scientific questions through the data and its representation to implementing specific answers to these questions. Finally, we find these ideas compelling and fruitful. That’s why we were drawn to them in the first place. We hope that our enthusiasm about the ideas and tools described in this book will be infectious enough to convince the readers of their value.

 

Difficulty level: Intermediate
Duration:
Speaker: :

The state of the field regarding the diagnosis and treatment of major depressive disorder (MDD) is discussed. Current challenges and opportunities facing the research and clinical communities are outlined, including appropriate quantitative and qualitative analyses of the heterogeneity of biological, social, and psychiatric factors which may contribute to MDD.

Difficulty level: Beginner
Duration: 1:29:28

This lesson gives an in-depth introduction of ethics in the field of artificial intelligence, particularly in the context of its impact on humans and public interest. As the healthcare sector becomes increasingly affected by the implementation of ever stronger AI algorithms, this lecture covers key interests which must be protected going forward, including privacy, consent, human autonomy, inclusiveness, and equity. 

Difficulty level: Beginner
Duration: 1:22:06
Speaker: : Daniel Buchman

This lesson describes a definitional framework for fairness and health equity in the age of the algorithm. While acknowledging the impressive capability of machine learning to positively affect health equity, this talk outlines potential (and actual) pitfalls which come with such powerful tools, ultimately making the case for collaborative, interdisciplinary, and transparent science as a way to operationalize fairness in health equity. 

Difficulty level: Beginner
Duration: 1:06:35
Speaker: : Laura Sikstrom

This lesson delves into the opportunities and challenges of telepsychiatry. While novel digital approaches to clinical research and care have the potential to improve and accelerate patient outcomes, researchers and care providers must consider new population factors, such as digital disparity. 

Difficulty level: Beginner
Duration: 1:20:28
Speaker: : Abhi Pratap

This lesson is an overview of transcriptomics, from fundamental concepts of the central dogma and RNA sequencing at the single-cell level, to how genetic expression underlies diversity in cell phenotypes. 

Difficulty level: Intermediate
Duration: 1:29:08

This is a continuation of the talk on the cellular mechanisms of neuronal communication, this time at the level of brain microcircuits and associated global signals like those measureable by electroencephalography (EEG). This lecture also discusses EEG biomarkers in mental health disorders, and how those cortical signatures may be simulated digitally.

Difficulty level: Intermediate
Duration: 1:11:04
Speaker: : Etay Hay

This lecture covers different perspectives on the study of the mental, focusing on the difference between Mind and Brain. 

Difficulty level: Beginner
Duration: 1:16:30

This lesson briefly goes over the outline of the Neuroscience for Machine Learners course. 

Difficulty level: Intermediate
Duration: 3:05
Speaker: : Dan Goodman

This lesson discusses a gripping neuroscientific question: why have neurons developed the discrete action potential, or spike, as a principle method of communication? 

Difficulty level: Intermediate
Duration: 9:34
Speaker: : Dan Goodman

This lecture focuses on how the immune system can target and attack the nervous system to produce autoimmune responses that may result in diseases such as multiple sclerosis, neuromyelitis, and lupus cerebritis manifested by motor, sensory, and cognitive impairments. Despite the fact that the brain is an immune-privileged site, autoreactive lymphocytes producing proinflammatory cytokines can cause active brain inflammation, leading to myelin and axonal loss.

Difficulty level: Beginner
Duration: 37:36
Speaker: : Anat Achiron

This lecture will provide an overview of neuroimaging techniques and their clinical applications.

Difficulty level: Beginner
Duration: 45:29
Speaker: : Dafna Ben Bashat