This lecture presents the Graphical (GUI) and Command Line (CLI) User Interface of TVB. Alongside with the speakers, explore and interact with all means necessary to generate, manipulate and visualize connectivity and network dynamics.
This lecture presents two recent clinical case studies using TVB: stroke recovery and dementia (due to Alzheimer’s Disease (AD)). Using a multi-scale neurophysiological model based on empirical multi-modal neuroimaging data, we show how local and global biophysical parameters characterize changes in individualized patient-specific brain dynamics, predict recovery of motor function for stroke patients, and correlate with individual differences in cognition for AD patients.
This tutorial demonstrates how to use the image processing pipeline with the HBP collab.
This tutorial provides instruction on how to use the TVB-NEST toolbox co-simulation in HBP collab.
In this tutorial, you will learn how to use TVB-NEST toolbox on your local computer.
This tutorial provides instruction on how to perform multi-scale simulation of Alzheimer's disease on The Virtual Brain Simulation Platform.
This presentation accompanies the paper entitled: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data (see link below to download publication).
This lesson consists of a supplementary video for the publication: Inferring multi-scale neural mechanisms with brain network modelling.
This demonstration walks through how to import your data into MATLAB.
This lesson provides instruction regarding the various factors one must consider when preprocessing data, preparing it for statistical exploration and analyses.
This tutorial outlines, step by step, how to perform analysis by group and how to do change-point detection.
This tutorial walks through several common methods for visualizing your data in different ways depending on your data type.
This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.
This brief tutorial goes over how you can easily work with big data as you would with any size of data.
In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.
This tutorial provides instruction on how to simulate brain tumors with TVB (reproducing publication: Marinazzo et al. 2020 Neuroimage). This tutorial comprises a didactic video, jupyter notebooks, and full data set for the construction of virtual brains from patients and health controls.
The tutorial on modelling strokes in TVB includes a didactic video and jupyter notebooks (reproducing publication: Falcon et al. 2016 eNeuro).
This tutorial covers the fundamentals of collaborating with Git and GitHub.
This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks.
This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.