In this hands-on analysis tutorial, users will mimic a kernel crash and learn the steps to restore inputs in such a case.
This lesson introduces various methods in MATLAB useful for dealing with data generated by calcium imaging.
This lesson will go through how to extract cells from video that has been cleaned of background noise and motion.
This tutorial demonstrates how to use MATLAB to generate and visualize animations of calcium fluctuations over time.
This final hands-on analysis tutorial walks users through the last visualization steps in the cellular data.
This tutorial instructs users how to use MATLAB to programmatically convert data from cells to a matrix.
In this tutorial, users will learn how to identify and remove background noise, or "blur", an important step in isolating cell bodies from image data.
This lesson teaches users how MATLAB can be used to apply image processing techniques to identify cell bodies based on contiguity.
This tutorial demonstrates how to extract the time course of calcium activity from each clusters of neuron somata, and store the data in a MATLAB matrix.
This lesson demonstrates how to use MATLAB to implement a multivariate dimension reduction method, PCA, on time series data.
This lecture covers infrared LED oblique illumination for studying neuronal circuits in in vitro block-preparations of the spinal cord and brain stem.
This lecture covers the application of diffusion MRI for clinical and preclinical studies.
This is an in-depth guide on EEG signals and their interaction within brain microcircuits. Participants are also shown techniques and software for simulating, analyzing, and visualizing these signals.
This tutorial introduces pipelines and methods to compute brain connectomes from fMRI data. With corresponding code and repositories, participants can follow along and learn how to programmatically preprocess, curate, and analyze functional and structural brain data to produce connectivity matrices.
In this tutorial on simulating whole-brain activity using Python, participants can follow along using corresponding code and repositories, learning the basics of neural oscillatory dynamics, evoked responses and EEG signals, ultimately leading to the design of a network model of whole-brain anatomical connectivity.
This tutorial walks participants through the application of dynamic causal modelling (DCM) to fMRI data using MATLAB. Participants are also shown various forms of DCM, how to generate and specify different models, and how to fit them to simulated neural and BOLD data.
This lesson corresponds to slides 158-187 of the PDF below.
This lesson is the first of three hands-on tutorials as part of the workshop Research Workflows for Collaborative Neuroscience. This tutorial goes over how to visualize data with Scanpy, a scalable toolkit for analyzing single-cell gene expression.
This hands-on tutorial walks you through DataJoint platform, highlighting features and schema which can be used to build robost neuroscientific pipelines.
In this third and final hands-on tutorial from the Research Workflows for Collaborative Neuroscience workshop, you will learn about workflow orchestration using open source tools like DataJoint and Flyte.
In this hands-on session, you will learn how to explore and work with DataLad datasets, containers, and structures using Jupyter notebooks.