Skip to main content
Course:

The Mouse Phenome Database (MPD) provides access to primary experimental trait data, genotypic variation, protocols and analysis tools for mouse genetic studies. Data are contributed by investigators worldwide and represent a broad scope of phenotyping endpoints and disease-related traits in naïve mice and those exposed to drugs, environmental agents or other treatments. MPD ensures rigorous curation of phenotype data and supporting documentation using relevant ontologies and controlled vocabularies. As a repository of curated and integrated data, MPD provides a means to access/re-use baseline data, as well as allows users to identify sensitized backgrounds for making new mouse models with genome editing technologies, analyze trait co-inheritance, benchmark assays in their own laboratories, and many other research applications. MPD’s primary source of funding is NIDA. For this reason, a majority of MPD data is neuro- and behavior-related.

Difficulty level: Beginner
Duration: 55:36
Speaker: : Elissa Chesler

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec
Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 15:10
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 2:49
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.

Difficulty level: Beginner
Duration: 6:27
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 3:55
Speaker: : MATLAB®
Difficulty level: Beginner
Duration: 3:52
Speaker: : MATLAB®

This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate
Duration: 1:26:02
Speaker: : Ariel Rokem

This tutorial was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner
Duration: 1:21:40
Speaker: : Tal Yarkoni