Skip to main content

This tutorial instructs users how to visually inspect partially pre-processed neuroimaging data in EEGLAB, specifically how to use the data browser to investigate specific channels, epochs, or events for removable artifacts, biological (e.g., eye blinks, muscle movements, heartbeat) or otherwise (e.g., corrupt channel, line noise). 

Difficulty level: Beginner
Duration: 5:08
Speaker: : Arnaud Delorme

This tutorial provides instruction on how to use EEGLAB to further preprocess EEG datasets by identifying and discarding bad channels which, if left unaddressed, can corrupt and confound subsequent analysis steps. 

Difficulty level: Beginner
Duration: 13:01
Speaker: : Arnaud Delorme

Users following this tutorial will learn how to identify and discard bad EEG data segments using the MATLAB toolbox EEGLAB. 

Difficulty level: Beginner
Duration: 11:25
Speaker: : Arnaud Delorme

This module covers many of the types of non-invasive neurotech and neuroimaging devices including electroencephalography (EEG), electromyography (EMG), electroneurography (ENG), magnetoencephalography (MEG), and more. 

Difficulty level: Beginner
Duration: 13:36
Speaker: : Harrison Canning
Course:

An introduction to data management, manipulation, visualization, and analysis for neuroscience. Students will learn scientific programming in Python, and use this to work with example data from areas such as cognitive-behavioral research, single-cell recording, EEG, and structural and functional MRI. Basic signal processing techniques including filtering are covered. The course includes a Jupyter Notebook and video tutorials.

 

Difficulty level: Beginner
Duration: 1:09:16
Speaker: : Aaron J. Newman

This lecture and tutorial focuses on measuring human functional brain networks, as well as how to account for inherent variability within those networks. 

Difficulty level: Intermediate
Duration: 50:44
Speaker: : Caterina Gratton

This lecture presents an overview of functional brain parcellations, as well as a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation.

Difficulty level: Advanced
Duration: 50:28
Speaker: : Pierre Bellec
Course:

Neuronify is an educational tool meant to create intuition for how neurons and neural networks behave. You can use it to combine neurons with different connections, just like the ones we have in our brain, and explore how changes on single cells lead to behavioral changes in important networks. Neuronify is based on an integrate-and-fire model of neurons. This is one of the simplest models of neurons that exist. It focuses on the spike timing of a neuron and ignores the details of the action potential dynamics. These neurons are modeled as simple RC circuits. When the membrane potential is above a certain threshold, a spike is generated and the voltage is reset to its resting potential. This spike then signals other neurons through its synapses.

Neuronify aims to provide a low entry point to simulation-based neuroscience.

Difficulty level: Beginner
Duration: 01:25
Speaker: : Neuronify

This short video walks you through the steps of publishing a dataset on brainlife, an open-source, free and secure reproducible neuroscience analysis platform.

Difficulty level: Beginner
Duration: 1:18
Speaker: :

This video shows how to use the brainlife.io interface to edit the participants' info file. This file is the ParticipantInfo.json file of the Brain Imaging Data Structure (BIDS).

Difficulty level: Beginner
Duration: 0:34
Speaker: :

This video will document the process of running an app on brainlife, from data staging to archiving of the final data outputs.

Difficulty level: Beginner
Duration: 3:43
Speaker: :

This video will document the process of visualizing the provenance of each step performed to generate a data object on brainlife.

Difficulty level: Beginner
Duration: 0:21
Speaker: :

This video will document the process of downloading and running the "reproduce.sh" script, which will automatically run all of the steps to generate a data object locally on a user's machine.

Difficulty level: Beginner
Duration: 3:44
Speaker: :

This video will document the process of creating a pipeline rule for batch processing on brainlife.

Difficulty level: Intermediate
Duration: 0:57
Speaker: :

This video will document the process of launching a Jupyter Notebook for group-level analyses directly from brainlife.

Difficulty level: Intermediate
Duration: 0:53
Speaker: :

This brief video walks you through the steps necessary when creating a project on brainlife.io. 

Difficulty level: Beginner
Duration: 1:45
Speaker: :

This brief video rus through how to make an accout on brainlife.io.

Difficulty level: Beginner
Duration: 0:30
Speaker: :

This video will document how to run a correlation analysis between the gray matter volume of two different structures using the output from brainlife app-freesurfer-stats.

Difficulty level: Beginner
Duration: 1:33
Speaker: :

This lecture introduces you to the basics of the Amazon Web Services public cloud. It covers the fundamentals of cloud computing and goes through both the motivations and processes involved in moving your research computing to the cloud.

Difficulty level: Intermediate
Duration: 3:09:12

As a part of NeuroHackademy 2020, this lecture delves into cloud computing, focusing on Amazon Web Services. 

Difficulty level: Beginner
Duration: 01:43:59