Overview of Day 2 of this course.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.
"Faster & more sensitive imaging with the MiniFAST" was presented by Caleb Kemere at the 2021 Virtual Miniscope Workshop as part of a series of talks by leading Miniscope users and developers.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.
This module introduces computational neuroscience by simulating neurons according to the AdEx model. You will learn about generative modeling, dynamical systems, and FI curves. The MATLAB code introduces Live Scripts and functions.
This module covers fMRI data, including creating and interpreting flat maps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.
Running your own Minion session in the MetaCell cloud using jupityr notebooks
Mimicking a kernel crash, and walking through the steps to restore your inputs.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
This lesson will go through how to extract cells from video that has been cleaned of background noise and motion.
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.
Visualizing the final results
You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.