Skip to main content

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 20:12
Speaker: : Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 12:52
Speaker: : Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 13:39
Speaker: : Mike X. Cohen

This module covers fMRI data, including creating and interpreting flatmaps, exploring variability and average responses, and visual eccentricity. You will learn about processing BOLD signals, trial-averaging, and t-tests. The MATLAB code introduces data animations, multicolor visualizations, and linear indexing.

Difficulty level: Intermediate
Duration: 17:54
Speaker: : Mike X. Cohen

Running your own Minion session in the MetaCell cloud using jupityr notebooks

Difficulty level: Beginner
Duration: 01:28:03

Mimicking a kernel crash, and walking through the steps to restore your inputs.

Difficulty level: Beginner
Duration: 00:20:34
Speaker: : Phil Dong

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 5:02
Speaker: : Mike X. Cohen

This lesson will go through how to extract cells from video that has been cleaned of background noise and motion.

Difficulty level: Beginner
Duration: 01:49:40
Speaker: : Phil Dong

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 15:01
Speaker: : Mike X. Cohen

Visualizing the final results

Difficulty level: Beginner
Duration: 00:27:23
Speaker: : Phil Dong

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 5:15
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 17:08
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 11:23
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 22:41
Speaker: : Mike X. Cohen

You will learn about working with calcium imaging data, including image processing to remove background "blur," identifying cells based on thresholded spatial contiguity, time series filtering, and principal components analysis (PCA). The MATLAB code shows data animations, capabilities of the image processing toolbox, and PCA.

Difficulty level: Intermediate
Duration: 17:19
Speaker: : Mike X. Cohen

This tutorial talks about how to upload and version your data in OpenNeuro.org

Difficulty level: Beginner
Duration: 5:36
Speaker: : Unknown

This tutorial shows how to share your data in OpenNeuro.org

Difficulty level: Beginner
Duration: 1:22
Speaker: : Unknown

This tutorial shows how to run analysis in OpenNeuro.org

Difficulty level: Beginner
Duration: 2:26
Speaker: : Unknown

The practical usage of The Virtual brain in its graphical user interface and via python scripts is introduced. In the graphical user interface, you are guided through its data repository, simulator, phase plane exploration tool, connectivity editor, stimulus generator and the provided analyses. The implemented iPython notebooks of TVB are presented, and since they are public, can be used for further exploration of The Virtual brain.

Difficulty level: Beginner
Duration: 1:12:24
Speaker: : Paul Triebkorn

Get to know the TVB graphical user interface and start your first simulation. The hands-on focuses on a brief introduction to the GUI of TVB. You will visualize a structural connectome and use it for simulation. The local neural mass model will be explored through the phase plane viewer and a parameter space exploration will be performed to observe different dynamics of the large-scale brain model.

Difficulty level: Beginner
Duration: 23:21
Speaker: : Paul Triebkorn