Skip to main content

The Medical Informatics Platform (MIP) is a platform providing federated analytics for diagnosis and research in clinical neuroscience research. The federated analytics is possible thanks to a distributed engine that executes computations and transfers information between the members of the federation (hospital nodes). In this talk the speaker will describe the process of designing and implementing new analytical tools, i.e. statistical and machine learning algorithms.  Mr. Sakellariou will further describe the environment in which these federated algorithms run, the challenges and the available tools, the principles that guide its design and the followed general methodology for each new algorithm. One of the most important challenges which are faced is to design these tools in a way that does not compromise the privacy of the clinical data involved. The speaker will show how to address the main questions when designing such algorithms: how to decompose and distribute the computations and what kind of information to exchange between nodes, in order to comply with the privacy constraint mentioned above. Finally, also the subject of validating these federated algorithms will be briefly touched.

Difficulty level: Intermediate
Duration: 20:26
Speaker: : Jason Skellariou

The Medical Informatics Platform (MIP) Dementia had been installed in several memory clinics across Europe allowing them to federate their real-world databases. Research open access databases had also been integrated such as ADNI (Alzheimer’s Dementia Neuroimaging Initiative), reaching a cumulative case load of more than 5,000 patients (major cognitive disorder due to Alzheimer’s disease, other major cognitive disorder, minor cognitive disorder, controls). The statistic and machine learning tools implemented in the MIP allowed researchers to conduct easily federated analyses among Italian memory clinics (Redolfi et al. 2020) and also across borders between the French (Lille), the Swiss (Lausanne) and the Italian (Brescia) datasets.

Difficulty level: Intermediate
Duration: 16:44
Speaker: : Mélanie Leroy

This lecture talks about the usage of knowledge graphs in hospitals and related challenges of semantic interoperability.

Difficulty level: Intermediate
Duration: 24:32

This lecture discusses risk-based anonymization approaches for medical research.

Difficulty level: Intermediate
Duration: 15:43
Speaker: : Fabian Prasser

This lecture provides an introduction to the study of eye-tracking in humans. 

Difficulty level: Beginner
Duration: 34:05
Speaker: : Ulrich Ettinger

This lecture discusses the the importance and need for data sharing in clinical neuroscience.

Difficulty level: Intermediate
Duration: 25:22
Speaker: : Thomas Berger

This lecture gives insights into the Medical Informatics Platform's current and future data privacy model.

Difficulty level: Intermediate
Duration: 17:29
Speaker: : Yannis Ioannidis

This lecture gives an overview on the European Health Dataspace. 

Difficulty level: Intermediate
Duration: 26:33

This is a tutorial on designing a Bayesian inference model to map belief trajectories, with emphasis on gaining familiarity with Hierarchical Gaussian Filters (HGFs).

 

This lesson corresponds to slides 65-90 of the PDF below. 

Difficulty level: Intermediate
Duration: 1:15:04
Speaker: : Daniel Hauke

This demonstration walks through how to import your data into MATLAB.

Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This lesson provides instruction regarding the various factors one must consider when preprocessing data, preparing it for statistical exploration and analyses. 

Difficulty level: Beginner
Duration: 15:10
Speaker: : MATLAB®

This tutorial outlines, step by step, how to perform analysis by group and how to do change-point detection.

Difficulty level: Beginner
Duration: 2:49
Speaker: : MATLAB®

This tutorial walks through several common methods for visualizing your data in different ways depending on your data type.

Difficulty level: Beginner
Duration: 6:10
Speaker: : MATLAB®

This tutorial illustrates several ways to approach predictive modeling and machine learning with MATLAB.

Difficulty level: Beginner
Duration: 6:27
Speaker: : MATLAB®

This brief tutorial goes over how you can easily work with big data as you would with any size of data.

Difficulty level: Beginner
Duration: 3:55
Speaker: : MATLAB®

In this tutorial, you will learn how to deploy your models outside of your local MATLAB environment, enabling wider sharing and collaboration.

Difficulty level: Beginner
Duration: 3:52
Speaker: : MATLAB®

This lesson provides a brief overview of the Python programming language, with an emphasis on tools relevant to data scientists.

Difficulty level: Beginner
Duration: 1:16:36
Speaker: : Tal Yarkoni

This lecture gives an introduction to the FAIR (findability, accessibility, interoperability, and reusability) science principles and examples of their application in neuroscience research. 

Difficulty level: Beginner
Duration: 55:57

This tutorial covers the fundamentals of collaborating with Git and GitHub.

Difficulty level: Intermediate
Duration: 2:15:50
Speaker: : Elizabeth DuPre

This lesson provides an overview of Jupyter notebooks, Jupyter lab, and Binder, as well as their applications within the field of neuroimaging, particularly when it comes to the writing phase of your research. 

Difficulty level: Intermediate
Duration: 50:28
Speaker: : Elizabeth DuPre