The Virtual Brain is an open-source, multi-scale, multi-modal brain simulation platform. In this lesson, you get introduced to brain simulation in general and to The Virtual brain in particular. Prof. Ritter will present the newest approaches for clinical applications of The Virtual brain - that is, for stroke, epilepsy, brain tumors and Alzheimer’s disease - and show how brain simulation can improve diagnostics, therapy and understanding of neurological disease.

Difficulty level: Beginner

Duration: 1:35:08

Speaker: : Petra Ritter

The concept of neural masses, an application of mean field theory, is introduced as a possible surrogate for electrophysiological signals in brain simulation. The mathematics of neural mass models and their integration to a coupled network are explained. Bifurcation analysis is presented as an important technique in the understanding of non-linear systems and as a fundamental method in the design of brain simulations. Finally, the application of the described mathematics is demonstrated in the exploration of brain stimulation regimes.

Difficulty level: Beginner

Duration: 1:49:24

Speaker: : Andreas Spiegler

The simulation of the virtual epileptic patient is presented as an example of advanced brain simulation as a translational approach to deliver improved results in clinics. The fundamentals of epilepsy are explained. On this basis, the concept of epilepsy simulation is developed. By using an iPython notebook, the detailed process of this approach is explained step by step. In the end, you are able to perform simple epilepsy simulations your own.

Difficulty level: Beginner

Duration: 1:28:53

Speaker: : Julie Courtiol

The practical usage of The Virtual brain in its graphical user interface and via python scripts is introduced. In the graphical user interface, you are guided through its data repository, simulator, phase plane exploration tool, connectivity editor, stimulus generator and the provided analyses. The implemented iPython notebooks of TVB are presented, and since they are public, can be used for further exploration of The Virtual brain.

Difficulty level: Beginner

Duration: 1:12:24

Speaker: : Paul Triebkorn

Course:

A brief overview of the Python programming language, with an emphasis on tools relevant to data scientists. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Beginner

Duration: 1:16:36

Speaker: : Tal Yarkoni

Course:

Tutorial on collaborating with Git and GitHub. This tutorial was part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate

Duration: 2:15:50

Speaker: : Elizabeth DuPre

Course:

This lecture and tutorial focuses on measuring human functional brain networks. The lecture and tutorial were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate

Duration: 50:44

Speaker: : Caterina Gratton

Course:

Lecture on functional brain parcellations and a set of tutorials on bootstrap agregation of stable clusters (BASC) for fMRI brain parcellation which were part of the 2019 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Advanced

Duration: 50:28

Speaker: : Pierre Bellec

Course:

Introduction to the central concepts of machine learning, and how they can be applied in Python using the Scikit-learn Package. This lecture was part of the 2018 Neurohackademy, a 2-week hands-on summer institute in neuroimaging and data science held at the University of Washington eScience Institute.

Difficulty level: Intermediate

Duration: 2:22:28

Speaker: : Jake Vanderplas

This lecture 1/15 is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 0:40

Speaker: : Florence I. Kleberg

This lecture (2/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:23

Speaker: : Florence I. Kleberg

This lecture (3/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:20

Speaker: : Florence I. Kleberg

This lecture (4/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:08

Speaker: : Florence I. Kleberg

This lecture (5/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:18

Speaker: : Florence I. Kleberg

This lecture (6/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures. Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:26

Speaker: : Florence I. Kleberg

This lecture (7/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 0:42

Speaker: : Florence I. Kleberg

This lecture (8/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 2:40

Speaker: : Florence I. Kleberg

This lecture (9/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 2:54

Speaker: : Florence I. Kleberg

This lecture (10/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 1:43

Speaker: : Florence I. Kleberg

This lecture (11/15) is part of the Computational Modeling of Neuronal Plasticity Course that aims to teach users how to build a mathematical model of a neuron, its inputs, and its neuronal plasticity mechanisms, by writing your own Python program. This lecture provides users with a brief video introduction to the concepts that serves as a companion to the lecture notes and solution figures.

Authors: Florence I. Kleberg and Prof. Jochen Triesch.

Difficulty level: Intermediate

Duration: 2:58

Speaker: : Florence I. Kleberg

- Digital brain atlasing (4)
- Epilepsy (3)
- Neuroimaging (13)
- Standards and best practices (15)
- Stroke (1)
- Tools (15)
- Assembly 2021 (1)
- Brain-hardware interfaces (13)
- Neural networks (1)
- PET (1)
- General neuroscience (4)
- Phenome (1)
- (-) Clinical neuroinformatics (2)
- Computational neuroscience (121)
- (-) Computer Science (6)
- (-) Genomics (22)
- Data science (12)
- Open science (5)
- Project management (6)
- Neuroethics (21)