Skip to main content

Brain network reconstruction from empirical data is of key importance to generate personalized virtual brain models. This lecture will introduce the basic concepts of preprocessing structural, functional and diffusion weighted neuroimages. It highlights the latest methods and pipelines to extract structural as well as functional connectomes according to a multimodal parcellation.

Difficulty level: Intermediate
Duration: 1:17:32
Speaker: : Michael Schirner

Learn how to simulate strokes with the simulation platform, The Virtual Brain. We will go through two papers: Functional Mechanisms of Recovery after Stroke: Modeling with The Virtual Brain and The Virtual Brain: Modeling Biological Correlates of Recovery After Chronic Stroke, and apply the same processes with our own structural connectivity data set in The Virtual Brain.

Difficulty level: Beginner
Duration: 7:43
Speaker: : Paul Triebkorn

Learn how to simulate seizure events and epilepsy in The Virtual Brain. We will look at the paper: On the Nature of Seizure Dynamics which describes a new local model called the Epileptor, and apply this same model in The Virtual Brain. This is part 1 of 2 in a series explaining how to use the Epileptor. In this part, we focus on setting up the parameters.

Difficulty level: Beginner
Duration: 4:44
Speaker: : Paul Triebkorn

In this lecture we will focus on a paper called “The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread”. Within their work, the authors used the epileptor model to simulate a patient's individual seizure. To understand the concept we will have a closer look at the equations of the epileptor model and particular the epileptogenicity index which controls the excitability of each brain region. Subsequently, we will begin to setup the epileptogenic zone in our own brain network model with TVB.

Difficulty level: Beginner
Duration: 6:25
Speaker: : Paul Triebkorn

After introducing the local epileptor model in the previous 2 videos we will now use it in a large scale brain simulation. We again focus on the paper “The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread”. Two simulations with different epileptogenicity across the network are visualized to show the difference in seizure spread across the cortex.

Difficulty level: Beginner
Duration: 6:36
Speaker: : Paul Triebkorn

This lecture gives an overview on the article “Individual brain structure and modelling predict seizure propagation” where 15 subjects with epilepsy were modelled to predict individual epileptogenic zones. With the TVB GUI we will model seizure spread and the effect of lesioning the connectome. The impact of cutting edges in the network on seizure spreading will be visualized.

Difficulty level: Beginner
Duration: 9:39
Speaker: : Paul Triebkorn

Along the example of a patient with bi-temporal epilepsy, we show step by step how to develop a Virtual Epileptic Patient (VEP) brain model and integrate patient-specific information such as brain connectivity, epileptogenic zone and MRI lesions. The patient's brain network model is then evaluated via simulation, data fitting and mathematical analysis. This lecture demonstrates how to develop novel personalized strategies towards therapy and intervention using TVB.

Difficulty level: Intermediate
Duration: 48:57
Speaker: : Julie Courtiol

This lecture focuses on higher-level simulation scenarios using stimulation protocols. We demonstrate how to build stimulation patterns in TVB, and use them in a simulation to induced activity dissipating into experimentally known resting-state networks in human and mouse brain, a well as to obtain EEG recordings reproducing empirical findings of other researchers.

Difficulty level: Intermediate
Duration: 47:14
Speaker: : Andreas Spiegler

This lecture presents the Graphical (GUI) and Command Line (CLI) User Interface of TVB. Alongside with the speakers, explore and interact with all means necessary to generate, manipulate and visualize connectivity and network dynamics. Speakers: Paula Popa & Mihai Andrei

Difficulty level: Beginner
Duration: 1:02:16
Speaker: :

This lecture briefly introduces The Virtual Brain (TVB), a multi-scale, multi-modal neuroinformatics platform for full brain network simulations using biologically realistic connectivity, as well as its potential neuroscience applications: for example with epilepsy.

Difficulty level: Beginner
Duration: 8:53
Speaker: : Petra Ritter

This lecture introduces the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components.

Difficulty level: Beginner
Duration:
Speaker: : Randy McIntosh

This lecture presents two recent clinical case studies using TVB: stroke recovery and dementia (due to Alzheimer’s Disease (AD)). Using a multi-scale neurophysiological model based on empirical multi-modal neuroimaging data, we show how local and global biophysical parameters characterize changes in  individualized patient-specific brain dynamics, predict recovery of motor function for stroke patients, and correlate with individual differences in cognition for AD patients.

Difficulty level: Intermediate
Duration: 32:11
Speaker: : Randy McIntosh

Tutorial on how to use the image processing pipeline with the HBP collab. Authors: M. Schirner, P. Triebkorn, P. Ritter

Difficulty level: Beginner
Duration: 5:55
Speaker: :

Tutorial on how to use the TVB-NEST toolbox co-simulation in HBP collab. Authors: D. Perdikis, L. Domide, M. Schirner, P. Ritter

Difficulty level: Beginner
Duration: 3:11
Speaker: :

Tutorial on how to use TVB-NEST toolbox on your local computer. Authors: D. Perdikis, L. Domide, M. Schirner, P. Ritter

Difficulty level: Beginner
Duration: 2:16
Speaker: :

Tutorial on how to perform multi-scale simulation of Alzheimer's disease on The Virtual Brain Simulation Platform. Authors: L. Stefanovski, P. Triebkorn, M.A. Diaz-Cortes, A. Solodkin, V. Jirsa, A.R. McIntosh, P. Ritter

Difficulty level: Beginner
Duration: 29:08
Speaker: :

Audio slides presentation to accompany the paper titled: An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. Authors: M. Schirner, S. Rothmeier, V. Jirsa, A.R. McIntosh, P. Ritter.

Difficulty level: Beginner
Duration: 4:56
Speaker: :

Supplement video for the publication: Inferring multi-scale neural mechanisms with brain network modelling. Authors: M. Schirner, A.R. McIntosh, V. Jirsa, G. Deco, P. Ritter 

Difficulty level: Beginner
Duration: 3:06
Speaker: :

Computational models provide a framework for integrating data across spatial scales and for exploring hypotheses about the biological mechanisms underlying neuronal and network dynamics. However, as models increase in complexity, additional barriers emerge to the creation, exchange, and re-use of models. Successful projects have created standards for describing complex models in neuroscience and provide open source tools to address these issues. This lecture provides an overview of these projects and make a case for expanded use of resources in support of reproducibility and validation of models against experimental data.

Difficulty level: Beginner
Duration: 1:00:39
Speaker: : Sharon Crook

GeneWeaver is a web application for the integrated cross-species analysis of functional genomics data to find convergent evidence from heterogeneous sources. The application consists of a large database of gene sets curated from multiple public data resources and curated submissions, along with a suite of analysis tools designed to allow flexible, customized workflows through web-based interactive analysis or scripted API driven analysis. Gene sets come from multiple widely studied species and include ontology annotations, brain gene expression atlases, systems genetic study results, gene regulatory information, pathway databases, drug interaction databases and many other sources. Users can retrieve, store, analyze and share gene sets through a graded access system. Analysis tools are based on combinatorics and statistical methods for comparing, contrasting and classifying gene sets based on their members.

Difficulty level: Beginner
Duration: 25:53
Speaker: :